Difference between revisions of "Forest UCM NLM BlockOnIncline"
		
		
		
		
		
		Jump to navigation
		Jump to search
		
				
		
		
	
| (51 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
| − | Consider a block of mass m sliding down the inclined plane shown below with a frictional force that is given by    | + | =the problem=  | 
| + | |||
| + | Consider a block of mass <math>m</math> is sliding down the inclined plane shown below with a frictional force that is given by    | ||
:<math>F_f = kmv^2</math>  | :<math>F_f = kmv^2</math>  | ||
| + | |||
| + | How long does it take to fall a distance <math>x</math>?  | ||
[[File:TF_UCM_InclinedPlaneWfriction.png | 200 px]]  | [[File:TF_UCM_InclinedPlaneWfriction.png | 200 px]]  | ||
| − | + | =Step 1:  Identify the system=  | |
| − | |||
| − | Step 1:  Identify the system  | ||
:The block is the system with the following external forces, A normal force, a gravitational force, and the force of friction.  | :The block is the system with the following external forces, A normal force, a gravitational force, and the force of friction.  | ||
| − | Step 2: Choose a suitable coordinate system  | + | =Step 2: Choose a suitable coordinate system=  | 
: A coordinate system with one axis along the direction of motion may make solving the problem easier  | : A coordinate system with one axis along the direction of motion may make solving the problem easier  | ||
| − | Step 3: Draw the Free Body Diagram  | + | =Step 3: Draw the Free Body Diagram=  | 
[[File:TF_UCM_FBD_InclinedPlaneWfriction.png | 200 px]]  | [[File:TF_UCM_FBD_InclinedPlaneWfriction.png | 200 px]]  | ||
| − | Step 4: Define the Force vectors using the above coordinate system  | + | =Step 4: Define the Force vectors using the above coordinate system=  | 
| + | |||
| + | :<math>\vec{N} = \left | \vec{N} \right | \hat{j}</math>  | ||
| + | :<math>\vec{F_g} = \left | \vec{F_g} \right | \left ( \sin \theta \hat{i} - \cos \theta \hat{j} \right )= mg \left ( \sin \theta \hat{i} - \cos \theta \hat{j} \right )</math>  | ||
| + | :<math>\vec{F_f} = - kmv^2 \hat{i}</math>  | ||
| + | |||
| + | =Step 5: Used Newton's second law=  | ||
| + | |||
| + | Motion in the  <math>\hat i</math> direction described by Newton's second law is:  | ||
| + | |||
| + | :<math>\sum F_{ext} = mg \sin \theta -mkv^2 = ma_x = m \frac{dv_x}{dt}</math>  | ||
| + | |||
| + | ;Notice a terminal velocity <math>v_t</math> exists when <math>a_x =0</math>  | ||
| + | :<math> mg \sin \theta -mkv^2 = ma_x = 0</math>  | ||
| + | :<math> \Rightarrow v_t^2 = \frac{g \sin \theta}{k}</math>  | ||
| + | |||
| + | ;This means that the block does not stop sliding but instead it reaches a minimal (terminal) velocity.  | ||
| + | |||
| + | Insert the terminal velocity constant into Newton's second law  | ||
| + | |||
| + | :<math>\sum F_{ext} = mk \left ( v_t^2 - v^2 \right)  = ma_x = m \frac{dv_x}{dt}</math>  | ||
| + | |||
| + | |||
| + | : <math>\int dt = \int \frac{dv}{k \left ( v_t^2 - v^2 \right)}</math>  | ||
| + | |||
| + | |||
| + | before we had <math>(v dv)</math> in the numerator and could do a <math>u du</math> substitution, but not this time, use an integral table.  | ||
| + | |||
| + | Integral table <math>\Rightarrow</math>  | ||
| + | |||
| + | ::<math>\int \frac{dx}{a^2 + b^2x^2} = \frac{1}{ab} \tan^{-1} \frac{bx}{a}</math>  | ||
| + | |||
| + | |||
| + | : <math>a^2 = v_t^2 = \frac{g \sin \theta}{k}</math>  | ||
| + | : <math>b^2= -1 = i^2</math>  | ||
| + | |||
| + | :<math>\int \frac{dv}{g\sin \theta - kv^2} = \frac{1}{ikv_t} \tan^{-1} \left ( \frac{iv}{v_t}  \right )</math>  | ||
| + | :::<math> = \frac{-i}{kv_t} \tan^{-1} \left ( \frac{iv}{v_t}  \right )</math>  | ||
| + | |||
| + | |||
| + | |||
| + | Identities  | ||
| + | |||
| + | ::<math>i\tan^{-1}(icx) = -\tanh^{-1}(cx) = -\tanh^{-1}\left (\frac{\left | b \right |}{a} x\right )</math>  | ||
| + | ::<math>\tan^{-1}(z) = \frac{i}{2} \log \left ( \frac{i + z}{i-z}\right )</math>  | ||
| + | ::<math>\tanh^{-1}(z) = \frac{1}{2} \log \left ( \frac{1 + z}{1-z}\right )</math>  | ||
| + | :<math>\tan^{-1}(ix) = \frac{i}{2} \log \left ( \frac{i + ix}{i-ix}\right )=\frac{i}{2} \log \left ( \frac{1 + 1x}{1-x}\right ) = i\tanh^{-1}(x)</math>  | ||
| + | |||
| + | |||
| + | substituting  | ||
| + | |||
| + | :<math>\int dt = \int \frac{dv}{k \left ( v_t^2 - v^2 \right)}</math>  | ||
| + | :<math>t = \frac{-i}{kv_t} \tan^{-1} \left ( \frac{iv}{v_t}\right )   = \frac{1}{kv_t} \tanh^{-1} \left ( \frac{v}{v_t} \right ) </math>  | ||
| + | |||
| + | Solving for <math>v</math>  | ||
| + | |||
| + | : <math>v = v_t \tanh \left ( k v_t t \right ) = \frac{dx}{dt}</math>  | ||
| + | |||
| + | |||
| + | :<math>\int dx = v_t \int \tanh \left ( k v_t t \right ) dt</math>  | ||
| + | |||
| + | |||
| + | Integral table <math>\Rightarrow</math>  | ||
| + | |||
| + | ::<math>\int \tanh (x) dx = \ln \left ( \cosh (x) \right )</math>  | ||
| + | |||
| + | |||
| + | :<math>x = \frac{1}{k}  \ln \left ( \cosh (k v_t t) \right )</math>  | ||
| + | |||
| + | solving for the fall time  | ||
| − | + | :<math>t = \frac{\cosh^{-1} \left ( e^{kx} \right)}{kv_t}= \frac{\cosh^{-1} \left ( e^{kx} \right)}{\sqrt{kg \sin \theta}}</math>  | |
[[Forest_UCM_NLM#Block_on_incline_with_friction]]  | [[Forest_UCM_NLM#Block_on_incline_with_friction]]  | ||
Latest revision as of 17:48, 8 September 2014
the problem
Consider a block of mass is sliding down the inclined plane shown below with a frictional force that is given by
How long does it take to fall a distance ?
Step 1: Identify the system
- The block is the system with the following external forces, A normal force, a gravitational force, and the force of friction.
 
Step 2: Choose a suitable coordinate system
- A coordinate system with one axis along the direction of motion may make solving the problem easier
 
Step 3: Draw the Free Body Diagram
Step 4: Define the Force vectors using the above coordinate system
Step 5: Used Newton's second law
Motion in the direction described by Newton's second law is:
- Notice a terminal velocity exists when
 
- This means that the block does not stop sliding but instead it reaches a minimal (terminal) velocity.
 
Insert the terminal velocity constant into Newton's second law
before we had  in the numerator and could do a  substitution, but not this time, use an integral table.
Integral table
Identities
substituting
Solving for
Integral table 
solving for the fall time