Difference between revisions of "Forest UCM NLM Ch1 CoordSys"
(15 intermediate revisions by the same user not shown) | |||
Line 66: | Line 66: | ||
:<math>\frac{ d \hat{r}}{dt} = \frac{d \phi}{dt} \hat{\phi}</math> | :<math>\frac{ d \hat{r}}{dt} = \frac{d \phi}{dt} \hat{\phi}</math> | ||
− | Thus for circular motion at a | + | Thus for circular motion at a constant radius we get the familiar expression |
:<math>\vec{v} = \lim_{\Delta t \rightarrow 0} \frac{\vec{r}(t_2)-\vec{r}(t_1)}{\Delta t}= \lim_{\Delta t \rightarrow 0} \frac{r\left( \hat{r}(t_2) - \hat{r}(t_1)\right)}{\Delta t} = r \frac{\Delta \phi}{\Delta t} \hat{\phi} = r \omega \hat{\phi}</math> | :<math>\vec{v} = \lim_{\Delta t \rightarrow 0} \frac{\vec{r}(t_2)-\vec{r}(t_1)}{\Delta t}= \lim_{\Delta t \rightarrow 0} \frac{r\left( \hat{r}(t_2) - \hat{r}(t_1)\right)}{\Delta t} = r \frac{\Delta \phi}{\Delta t} \hat{\phi} = r \omega \hat{\phi}</math> | ||
Line 96: | Line 96: | ||
:<math>\hat r = \cos \phi \hat{i} + \sin \phi \hat{j}</math> | :<math>\hat r = \cos \phi \hat{i} + \sin \phi \hat{j}</math> | ||
− | :<math>\hat \dot{r} = \frac{d \hat{r}}{d \phi} \frac{d \phi}{d t} =\left( \sin \phi \hat{i} | + | :<math>\hat \dot{r} = \frac{d \hat{r}}{d \phi} \frac{d \phi}{d t} =\left( -\sin \phi \hat{i} + \cos \phi \hat{j} \right ) \dot{\phi}</math> |
:: <math>= \left ( \hat{\phi} \right ) \dot{\phi} </math> | :: <math>= \left ( \hat{\phi} \right ) \dot{\phi} </math> | ||
Line 135: | Line 135: | ||
Cast the unit vector in terms of cartesian coordinates and take the derivative. | Cast the unit vector in terms of cartesian coordinates and take the derivative. | ||
− | : <math> \hat{\phi} = \sin \phi \hat{i} | + | : <math> \hat{\phi} = -\sin \phi \hat{i} + \cos \phi \hat{j} </math> |
:<math>\hat \dot{\phi} = \frac{d \hat{\phi}}{d \phi} \frac{d \phi}{d t} =\left( -\cos \phi \hat{i} - \sin \phi \hat{j} \right ) \dot{\phi}</math> | :<math>\hat \dot{\phi} = \frac{d \hat{\phi}}{d \phi} \frac{d \phi}{d t} =\left( -\cos \phi \hat{i} - \sin \phi \hat{j} \right ) \dot{\phi}</math> | ||
Line 198: | Line 198: | ||
another way to determine the unit vector derivative is to cast them in terms of cartesian coordinate. | another way to determine the unit vector derivative is to cast them in terms of cartesian coordinate. | ||
− | :<math>\hat{r} = \frac{\vec{r}}{|\vec{r}|} =\cos \phi \sin \theta \hat{i} + \sin \phi \sin \theta \hat{j} + \cos \theta \hat{k}</math> | + | :<math>\hat{r} = \frac{\vec{r}}{|\vec{r}|} =\cos \phi \sin \theta \hat{i} + \sin \phi \sin \theta \hat{j} + \cos \theta \hat{k}= \frac{\frac{\partial \vec{r}}{\partial r}}{\left | \frac{\partial \vec{r}}{\partial r}\right | } </math> |
− | :<math>\hat{\phi} = \frac{\ | + | :<math>\hat{\phi} = \frac{\frac{\partial \vec{r}}{\partial \phi}}{\left | \frac{\partial \vec{r}}{\partial \phi}\right | } =- \sin \phi \hat{i} + \cos \phi \hat{j}= \frac{\hat {z} \times \hat {r} }{\sin \theta}</math> |
− | :<math>\hat{\theta} = \hat{\phi} \times \hat {r} = | + | :<math>\hat{\theta} = -\hat{\phi} \times \hat {r} =\cos \phi \cos \theta \hat{i} + \sin \phi \cos \theta \hat{j} - \sin \theta \hat{k}</math> |
The derivative of the above unit vectors are | The derivative of the above unit vectors are | ||
Line 219: | Line 219: | ||
− | :<math>\vec{a}</math> | + | :<math>\vec{a}</math>= <math>\frac{d}{dt} \left ( \dot{r} \hat{r} + r \left ( \dot{\theta} \hat{\theta} + \dot{\phi} \sin \theta \hat {\phi} \right ) \right )</math> |
::=<math> \ddot{r} \hat{r} + \dot{r} \dot{\hat{r}} </math> | ::=<math> \ddot{r} \hat{r} + \dot{r} \dot{\hat{r}} </math> | ||
:: <math>+ \dot{r} \dot{\theta} \hat{\theta} + r \ddot{\theta} \hat{\theta} + r \dot{\theta} \dot{\hat{\theta}}</math> | :: <math>+ \dot{r} \dot{\theta} \hat{\theta} + r \ddot{\theta} \hat{\theta} + r \dot{\theta} \dot{\hat{\theta}}</math> | ||
:: <math>+ \dot{r} \dot{\phi} \sin \theta \hat {\phi} + r \ddot{\phi} \sin \theta \hat {\phi} + r \dot{\phi} \dot{\sin \theta} \hat {\phi} + r \dot{\phi} \sin \theta \dot{\hat {\phi}}</math> | :: <math>+ \dot{r} \dot{\phi} \sin \theta \hat {\phi} + r \ddot{\phi} \sin \theta \hat {\phi} + r \dot{\phi} \dot{\sin \theta} \hat {\phi} + r \dot{\phi} \sin \theta \dot{\hat {\phi}}</math> | ||
+ | :: = <math>\left ( \ddot{r} - r \dot{\theta}^2 - r \dot{\phi}^2 \sin \theta \right) \hat{r} | ||
+ | + \left( r \ddot{\theta} + 2 r \dot{\theta} - r \dot{\phi}^2 \sin \theta \cos \theta \right) \hat{\theta} | ||
+ | + \left ( r \ddot{\phi} \sin \theta + 2 r \dot{\theta} \dot{\phi} \cos \theta + 2 \dot{r} \dot{\phi} \sin \theta \right ) \hat{\phi} | ||
+ | </math> | ||
+ | |||
[[Forest_UCM_NLM#Space]] | [[Forest_UCM_NLM#Space]] |
Latest revision as of 20:23, 27 August 2021
Cartesian, Spherical, and Cylindrical coordinate systems are commonly used to describe three-dimensional space.
Cartesian
Vector Notation convention:
Position:
Velocity and Acceleration vector in cartesian coordinates
- = =
cartesian unit vectors do not change with time (unit vectors for other coordinate system types do)
- = =
Similarly Acceleration is given by
- = =
Polar
Position:
Because
points in a unique direction given by we can write the position vector as- : does not have the units of length
The unit vectors ( and ) are changing in time. You could express the position vector in terms of the cartesian unit vectors in order to avoid this
The dependence of position with
can be seen if you look at how the position changes with time.Velocity in Polar Coordinates
Consider the motion of a particle in a circle. At time
the particle is at and at time the particle is at
If we take the limit
( or ) then we can write the velocity of this particle traveling in a circle as- or
Thus for circular motion at a constant radius we get the familiar expression
If the particle is not constrained to circular motion ( i.e.:
can change with time) then the velocity vector in polar coordinates is
- =
- or in more compact form
- linear velocity Angular velocity
- Finding the derivative directly
Cast the unit vector in terms of cartesian coordinates and take the derivative.
Acceleration in Polar Coordinates
Taking the derivative of velocity with time gives the acceleration
We need to find the derivative of the unit vector with time.
Consider the position change below in terms of only the unit vector
Using the same arguments used to calculate the rate of change in :
If we take the limit
( or ) then we can write the velocity of this particle traveling in a circle as- or
- Finding the derivative of directly
Cast the unit vector in terms of cartesian coordinates and take the derivative.
Substuting the above into our calculation for acceleration:
For the case of circular motion at constant
radial (centripetal, center seeking) acceleration
angular (tangential) acceleration
If
Then there are two additional terms
- = radial acceleration
- = Coriolis acceleration (to be described later)
Cylindrical
Cylindrical coordinates are polar coordinates with a third dimension usually labeled
change picture so angle isnot
We just need to add to all the vectors (remember )
Spherical
Position:
Velocity vector in Spherical coordinates
- = =
another way to determine the unit vector derivative is to cast them in terms of cartesian coordinate.
The derivative of the above unit vectors are
substituting the above into the definition of velocity
- =
=
Acceleration vector in Spherical coordinates
- =
- =
- =