Difference between revisions of "Extracting DeltaDoverD from PionAsym"

From New IAC Wiki
Jump to navigation Jump to search
(Created page with "==Fragmentation Independence== The asymmetries from semi inclusive pion electroproduction using proton or deuteron targets can be written in terms of the difference of the yield …")
 
 
(46 intermediate revisions by the same user not shown)
Line 1: Line 1:
==Fragmentation Independence==
+
[[Delta_D_over_D]]
The asymmetries from semi inclusive pion electroproduction using proton or deuteron targets can be written in terms of the difference of the yield from oppositely charged pions <ref name="Christova"> Christova, E., & Leader, E. (1999). Semi-inclusive production-tests for independent fragmentation and for polarized quark densities. hep-ph/9907265.</ref>:<br>
+
 
 +
;Extraction of <math>\frac{\Delta d_v}{d_v}</math> from charged pion asymmetries
 +
 
 +
=Leading Order (LO) extraction=
 +
 
 +
==Cross-section==
 +
A leading order expression for charged pion semi-inclusive pion electro-production cross section, represented as a sum of the <math>\pi^+</math> and <math>\pi^-</math> cross sections,  using proton or neutron targets can be written, using Eq. 9 & 10 from Ref.<ref name="Christova9907265"> Christova, E., & Leader, E. (1999). Semi-inclusive production-tests for independent fragmentation and for polarized quark densities. hep-ph/9907265.</ref>, as:
 +
 
 +
{| border="0" style="background:transparent;"  align="center"
 +
|-
 +
|<math>\sigma_p^{\pi^+ + \pi^-} = \frac{1}{9}[4( u + \bar{u}) + ( d +  \bar{d})]D_u^{\pi^+ + \pi^-} + 2 s D_u^{\pi^+ + \pi^-} </math>
 +
|}<br>
 +
{| border="0" style="background:transparent;"  align="center"
 +
|-
 +
|<math>\sigma_n^{\pi^+ + \pi^-} = \frac{1}{9}[4(d + \bar{d}) + (u + \bar{u})]D_u^{\pi^+ + \pi^-}+ 2 s D_u^{\pi^+ + \pi^-} </math>
 +
|}<br>
 +
 
 +
 
 +
Independent fragmentation identifies the process in which quarks fragment into hadrons, independent of the photon-quark scattering process. In other words, the fragmentation process is independent of the initial quark environment, which initiates the hadronization process. Assuming independent fragmentation  and using isospin (<math>D_u^{\pi^+} = D_{\overline{u}}^{\pi^-}</math> and <math>D_d^{\pi^-} = D_{\overline{d}}^{\pi^+}</math> ) and charge (<math>D_u^{\pi^+} = D_d^{\pi^-}</math>) conjugation invariance for the fragmentation functions, the following equality holds:<br>
 +
{| border="0" style="background:transparent;"  align="center"
 +
|-
 +
|<math>D_u^{\pi^+ \pm \pi^-} = D_u^{\pi^+} \pm D_u^{\pi^-} = D_d^{\pi^+ \pm \pi^-}</math>
 +
|}<br>
 +
 
 +
Strange quark contributions to the above SIDIS cross-section become ignorable due to the dominant contributions from the up and down quarks as x_{Bj} increases beyond 0.3
 +
 
 +
{| border="0" style="background:transparent;"  align="center"
 +
|-
 +
|<math>\sigma_p^{\pi^+ + \pi^-} = \frac{1}{9}[4( u + \bar{u}) + ( d +  \bar{d})]D_u^{\pi^+ + \pi^-}</math>
 +
|}<br>
 +
{| border="0" style="background:transparent;"  align="center"
 +
|-
 +
|<math>\sigma_n^{\pi^+ + \pi^-} = \frac{1}{9}[4(d + \bar{d}) + (u + \bar{u})]D_u^{\pi^+ + \pi^-}</math>
 +
|}<br>
 +
 
 +
== Helicity Difference Cross Section==
 +
 
 +
 
 +
The polarized cross section difference is defined as :
 +
 
 +
{| border="0" style="background:transparent;"  align="center"
 +
|-
 +
|<math>\Delta \sigma = \sigma_{\uparrow \downarrow} - \sigma_{\uparrow \uparrow}</math>
 +
|}<br>
 +
 
 +
using the polarized cross section <math>(\sigma_{\alpha \beta})</math> where <math>\alpha</math> refers to the lepton helicity  and <math>\beta</math> to the  target helicity.
 +
 
 +
The charged pion helicity difference <math>(\Delta \sigma_p^{\pi^+ + \pi^-})</math> can be written using equations 6 and 7 from Reference <ref name="Christova9907265"> </ref> as
 +
 
 +
{| border="0" style="background:transparent;"  align="center"
 +
|-
 +
|<math>\Delta \sigma_p^{\pi^+ + \pi^-} = \frac{1}{9}[4(\Delta u + \Delta \bar{u}) + (\Delta d + \Delta \bar{d})]D_u^{\pi^+ + \pi^-}</math>
 +
|}<br>
 +
{| border="0" style="background:transparent;"  align="center"
 +
|-
 +
|<math>\Delta \sigma_n^{\pi^+ + \pi^-} = \frac{1}{9}[4(\Delta d + \Delta d^-) + (\Delta u + \Delta u^-)]D_u^{\pi^+ + \pi^-}</math>
 +
|}<br>
 +
 
 +
 
 +
The analogous expressions for the case of a Deuteron target are
 +
 
 +
 
 +
{| border="0" style="background:transparent;"  align="center"
 +
|-
 +
|<math>\sigma_{2H}^{\pi^+ \pm \pi^-} = \frac{5}{9}[( u +  \bar{u}) \pm ( d +  \bar{d})]D_u^{\pi^+ \pm \pi^-}</math>
 +
|-
 +
|<math>\Delta \sigma_{2H}^{\pi^+ \pm \pi^-} = \frac{5}{9}[(\Delta u + \Delta \bar{u}) \pm (\Delta d + \Delta \bar{d})]D_u^{\pi^+ \pm \pi^-}</math>
 +
|}<br>
 +
and unpolarized:<br>
 +
<br>
 +
 
 +
==LO models for SIDIS cross section==
 +
 
 +
==GJR08FFNS==
 +
 
 +
==GSRV==
 +
 
 +
 
 +
 
 +
 
 +
The polarized cross section difference is defined as :
 +
 
 +
{| border="0" style="background:transparent;"  align="center"
 +
|-
 +
|<math>\Delta \sigma = \sigma_{\uparrow \downarrow} - \sigma_{\uparrow \uparrow}</math>
 +
|}<br>
 +
 
 +
using the polarized cross section <math>(\sigma_{\alpha \beta})</math> where <math>\alpha</math> refers to the lepton helicity  and <math>\beta</math> to the  target helicity.
 +
 
 +
The charged pion helicity difference <math>(\Delta \sigma_p^{\pi^+ + \pi^-})</math> can be written using equations 6 and 7 from Reference <ref name="Christova9907265"> </ref> as
 +
 
 +
{| border="0" style="background:transparent;"  align="center"
 +
|-
 +
|<math>\Delta \sigma_p^{\pi^+ + \pi^-} = \frac{1}{9}[4(\Delta u + \Delta \bar{u}) + (\Delta d + \Delta \bar{d})]D_u^{\pi^+ + \pi^-}</math>
 +
|}<br>
 +
{| border="0" style="background:transparent;"  align="center"
 +
|-
 +
|<math>\Delta \sigma_n^{\pi^+ + \pi^-} = \frac{1}{9}[4(\Delta d + \Delta d^-) + (\Delta u + \Delta u^-)]D_u^{\pi^+ + \pi^-}</math>
 +
|}<br>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
The analogous expressions for the case of a Deuteron target are
 +
 
 +
 
 +
{| border="0" style="background:transparent;"  align="center"
 +
|-
 +
|<math>\sigma_{2H}^{\pi^+ \pm \pi^-} = \frac{5}{9}[( u +  \bar{u}) \pm ( d +  \bar{d})]D_u^{\pi^+ \pm \pi^-}</math>
 +
|-
 +
|<math>\Delta \sigma_{2H}^{\pi^+ \pm \pi^-} = \frac{5}{9}[(\Delta u + \Delta \bar{u}) \pm (\Delta d + \Delta \bar{d})]D_u^{\pi^+ \pm \pi^-}</math>
 +
|}<br>
 +
and unpolarized:<br>
 +
<br>
 +
 
 +
 
 +
The charged pion asymmetry may be defined as
 +
 
 
{| border="0" style="background:transparent;"  align="center"
 
{| border="0" style="background:transparent;"  align="center"
 
|-
 
|-
Line 9: Line 127:
 
|<math>A_{1,2H}^{\pi^+ \pm \pi^-} = \frac{\Delta \sigma_{2H}^{\pi^+ \pm \pi^-}}{\sigma_{2H}^{\pi^+ \pm \pi^-}} = \frac{[({\sigma_{2H}}^{\pi^+})_{1/2}-({\sigma_{2H}}^{\pi^+})_{3/2}] \pm [({\sigma_{2H}}^{\pi^-})_{1/2}-({\sigma_{2H}}^{\pi^-})_{3/2}]}{[({\sigma_{2H}}^{\pi^+})_{1/2}+({\sigma_{2H}}^{\pi^+})_{3/2}] \pm [({\sigma_{2H}}^{\pi^-})_{1/2}+({\sigma_{2H}}^{\pi^-})_{3/2}]}</math>
 
|<math>A_{1,2H}^{\pi^+ \pm \pi^-} = \frac{\Delta \sigma_{2H}^{\pi^+ \pm \pi^-}}{\sigma_{2H}^{\pi^+ \pm \pi^-}} = \frac{[({\sigma_{2H}}^{\pi^+})_{1/2}-({\sigma_{2H}}^{\pi^+})_{3/2}] \pm [({\sigma_{2H}}^{\pi^-})_{1/2}-({\sigma_{2H}}^{\pi^-})_{3/2}]}{[({\sigma_{2H}}^{\pi^+})_{1/2}+({\sigma_{2H}}^{\pi^+})_{3/2}] \pm [({\sigma_{2H}}^{\pi^-})_{1/2}+({\sigma_{2H}}^{\pi^-})_{3/2}]}</math>
 
|}<br>
 
|}<br>
 +
 +
where the fragmentations functions <math>D</math> do not contribute if independent fragmentation, and isospin and charge conjugation are invariant.
 +
 
Independent fragmentation identifies the process in which quarks fragment into hadrons, independent of the photon-quark scattering process. In other words, the fragmentation process is independent of the initial quark environment, which initiates the hadronization process. Assuming independent fragmentation  and using isospin (<math>D_u^{\pi^+} = D_{\overline{u}}^{\pi^-}</math> and <math>D_d^{\pi^-} = D_{\overline{d}}^{\pi^+}</math> ) and charge (<math>D_u^{\pi^+} = D_d^{\pi^-}</math>) conjugation invariance for the fragmentation functions, the following equality holds:<br>
 
Independent fragmentation identifies the process in which quarks fragment into hadrons, independent of the photon-quark scattering process. In other words, the fragmentation process is independent of the initial quark environment, which initiates the hadronization process. Assuming independent fragmentation  and using isospin (<math>D_u^{\pi^+} = D_{\overline{u}}^{\pi^-}</math> and <math>D_d^{\pi^-} = D_{\overline{d}}^{\pi^+}</math> ) and charge (<math>D_u^{\pi^+} = D_d^{\pi^-}</math>) conjugation invariance for the fragmentation functions, the following equality holds:<br>
 
{| border="0" style="background:transparent;"  align="center"
 
{| border="0" style="background:transparent;"  align="center"
Line 60: Line 181:
 
|}<br>
 
|}<br>
 
The ratio of polarized to unpolarized valence quark distribution functions can be extracted using the last two equations.<br>
 
The ratio of polarized to unpolarized valence quark distribution functions can be extracted using the last two equations.<br>
 +
 +
=Next to leading Order (NLO)=
 +
<ref name="Sissakian074032"> A.N. Sissakian, O. Yu. Shevchenko, and O.N. Ivanov Phys Rev D 70 (074032) 2004 https://arxiv.org/abs/hep-ph/0411243</ref>
 +
 +
 +
Towards semi-inclusive deep inelastic scattering at next-to-next-to-leading order, Daniele Anderle  https://arxiv.org/pdf/1612.01293.pdf
 +
 +
 +
D. de Florian, R. Sassot, M. Epele, R. J. Herna ́ndez-Pinto, M. Stratmann. Phys. Rev. D 91 014035 (2015).
 +
 +
Global extraction of the parton-to-pion fragmentation functions at NLO accuracy in QCD R. J. Herna ́ndez-Pinto  2016 https://arxiv.org/pdf/1609.02455.pdf
 +
 +
2014Next-to-Leading Order QCD Factorization for Semi-Inclusive Deep Inelastic Scattering at Twist 4, Zhong-Bo Kang, Enke Wang, Xin-Nian Wang, and Hongxi Xing
 +
Phys. Rev. Lett. 112, 102001 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.102001
 +
 +
=References=
 +
 +
2009 talk by Xiodong Jiang, kinematic cuts identified (Q2 >1GeV2,W >2GeV,W' (missing mass of undetected hadrons) >1.5GeV,xF >0,pπ >2GeV/c) , http://www.int.washington.edu/talks/WorkShops/int_09_3/People/Jiang_X/Jiang.pdf
 +
 +
 +
==Bibliography==
 +
 +
</references>
 +
 +
==Documents==
 +
 +
[[File:Christova_Leader_ hep-ph-9907265.pdf]]
 +
 +
[[File:Sissakian_PhysRevD70_074032_2004.pdf]]
 +
 +
 +
https://twiki.cern.ch/twiki/bin/view/LHCPhysics/PDF
 +
 +
 +
SIDIS cross sections
 +
 +
[[File:Asauryan_nucle-ex1103.1649.pdf]]
 +
 +
[[Delta_D_over_D]]

Latest revision as of 15:35, 22 September 2018

Delta_D_over_D

Extraction of [math]\frac{\Delta d_v}{d_v}[/math] from charged pion asymmetries

Leading Order (LO) extraction

Cross-section

A leading order expression for charged pion semi-inclusive pion electro-production cross section, represented as a sum of the [math]\pi^+[/math] and [math]\pi^-[/math] cross sections, using proton or neutron targets can be written, using Eq. 9 & 10 from Ref.<ref name="Christova9907265"> Christova, E., & Leader, E. (1999). Semi-inclusive production-tests for independent fragmentation and for polarized quark densities. hep-ph/9907265.</ref>, as:

[math]\sigma_p^{\pi^+ + \pi^-} = \frac{1}{9}[4( u + \bar{u}) + ( d + \bar{d})]D_u^{\pi^+ + \pi^-} + 2 s D_u^{\pi^+ + \pi^-} [/math]


[math]\sigma_n^{\pi^+ + \pi^-} = \frac{1}{9}[4(d + \bar{d}) + (u + \bar{u})]D_u^{\pi^+ + \pi^-}+ 2 s D_u^{\pi^+ + \pi^-} [/math]



Independent fragmentation identifies the process in which quarks fragment into hadrons, independent of the photon-quark scattering process. In other words, the fragmentation process is independent of the initial quark environment, which initiates the hadronization process. Assuming independent fragmentation and using isospin ([math]D_u^{\pi^+} = D_{\overline{u}}^{\pi^-}[/math] and [math]D_d^{\pi^-} = D_{\overline{d}}^{\pi^+}[/math] ) and charge ([math]D_u^{\pi^+} = D_d^{\pi^-}[/math]) conjugation invariance for the fragmentation functions, the following equality holds:

[math]D_u^{\pi^+ \pm \pi^-} = D_u^{\pi^+} \pm D_u^{\pi^-} = D_d^{\pi^+ \pm \pi^-}[/math]


Strange quark contributions to the above SIDIS cross-section become ignorable due to the dominant contributions from the up and down quarks as x_{Bj} increases beyond 0.3

[math]\sigma_p^{\pi^+ + \pi^-} = \frac{1}{9}[4( u + \bar{u}) + ( d + \bar{d})]D_u^{\pi^+ + \pi^-}[/math]


[math]\sigma_n^{\pi^+ + \pi^-} = \frac{1}{9}[4(d + \bar{d}) + (u + \bar{u})]D_u^{\pi^+ + \pi^-}[/math]


Helicity Difference Cross Section

The polarized cross section difference is defined as :

[math]\Delta \sigma = \sigma_{\uparrow \downarrow} - \sigma_{\uparrow \uparrow}[/math]


using the polarized cross section [math](\sigma_{\alpha \beta})[/math] where [math]\alpha[/math] refers to the lepton helicity and [math]\beta[/math] to the target helicity.

The charged pion helicity difference [math](\Delta \sigma_p^{\pi^+ + \pi^-})[/math] can be written using equations 6 and 7 from Reference <ref name="Christova9907265"> </ref> as

[math]\Delta \sigma_p^{\pi^+ + \pi^-} = \frac{1}{9}[4(\Delta u + \Delta \bar{u}) + (\Delta d + \Delta \bar{d})]D_u^{\pi^+ + \pi^-}[/math]


[math]\Delta \sigma_n^{\pi^+ + \pi^-} = \frac{1}{9}[4(\Delta d + \Delta d^-) + (\Delta u + \Delta u^-)]D_u^{\pi^+ + \pi^-}[/math]



The analogous expressions for the case of a Deuteron target are


[math]\sigma_{2H}^{\pi^+ \pm \pi^-} = \frac{5}{9}[( u + \bar{u}) \pm ( d + \bar{d})]D_u^{\pi^+ \pm \pi^-}[/math]
[math]\Delta \sigma_{2H}^{\pi^+ \pm \pi^-} = \frac{5}{9}[(\Delta u + \Delta \bar{u}) \pm (\Delta d + \Delta \bar{d})]D_u^{\pi^+ \pm \pi^-}[/math]


and unpolarized:

LO models for SIDIS cross section

GJR08FFNS

GSRV

The polarized cross section difference is defined as :

[math]\Delta \sigma = \sigma_{\uparrow \downarrow} - \sigma_{\uparrow \uparrow}[/math]


using the polarized cross section [math](\sigma_{\alpha \beta})[/math] where [math]\alpha[/math] refers to the lepton helicity and [math]\beta[/math] to the target helicity.

The charged pion helicity difference [math](\Delta \sigma_p^{\pi^+ + \pi^-})[/math] can be written using equations 6 and 7 from Reference <ref name="Christova9907265"> </ref> as

[math]\Delta \sigma_p^{\pi^+ + \pi^-} = \frac{1}{9}[4(\Delta u + \Delta \bar{u}) + (\Delta d + \Delta \bar{d})]D_u^{\pi^+ + \pi^-}[/math]


[math]\Delta \sigma_n^{\pi^+ + \pi^-} = \frac{1}{9}[4(\Delta d + \Delta d^-) + (\Delta u + \Delta u^-)]D_u^{\pi^+ + \pi^-}[/math]




The analogous expressions for the case of a Deuteron target are


[math]\sigma_{2H}^{\pi^+ \pm \pi^-} = \frac{5}{9}[( u + \bar{u}) \pm ( d + \bar{d})]D_u^{\pi^+ \pm \pi^-}[/math]
[math]\Delta \sigma_{2H}^{\pi^+ \pm \pi^-} = \frac{5}{9}[(\Delta u + \Delta \bar{u}) \pm (\Delta d + \Delta \bar{d})]D_u^{\pi^+ \pm \pi^-}[/math]


and unpolarized:


The charged pion asymmetry may be defined as

[math]A_{1,p}^{\pi^+ \pm \pi^-} = \frac{\Delta \sigma_p^{\pi^+ \pm \pi^-}}{\sigma_p^{\pi^+ \pm \pi^-}} = \frac{[({\sigma_p}^{\pi^+})_{1/2}-({\sigma_p}^{\pi^+})_{3/2}] \pm [({\sigma_p}^{\pi^-})_{1/2}-({\sigma_p}^{\pi^-})_{3/2}]}{[({\sigma_p}^{\pi^+})_{1/2}+({\sigma_p}^{\pi^+})_{3/2}] \pm [({\sigma_p}^{\pi^-})_{1/2}+({\sigma_p}^{\pi^-})_{3/2}]}[/math]


[math]A_{1,2H}^{\pi^+ \pm \pi^-} = \frac{\Delta \sigma_{2H}^{\pi^+ \pm \pi^-}}{\sigma_{2H}^{\pi^+ \pm \pi^-}} = \frac{[({\sigma_{2H}}^{\pi^+})_{1/2}-({\sigma_{2H}}^{\pi^+})_{3/2}] \pm [({\sigma_{2H}}^{\pi^-})_{1/2}-({\sigma_{2H}}^{\pi^-})_{3/2}]}{[({\sigma_{2H}}^{\pi^+})_{1/2}+({\sigma_{2H}}^{\pi^+})_{3/2}] \pm [({\sigma_{2H}}^{\pi^-})_{1/2}+({\sigma_{2H}}^{\pi^-})_{3/2}]}[/math]


where the fragmentations functions [math]D[/math] do not contribute if independent fragmentation, and isospin and charge conjugation are invariant.

Independent fragmentation identifies the process in which quarks fragment into hadrons, independent of the photon-quark scattering process. In other words, the fragmentation process is independent of the initial quark environment, which initiates the hadronization process. Assuming independent fragmentation and using isospin ([math]D_u^{\pi^+} = D_{\overline{u}}^{\pi^-}[/math] and [math]D_d^{\pi^-} = D_{\overline{d}}^{\pi^+}[/math] ) and charge ([math]D_u^{\pi^+} = D_d^{\pi^-}[/math]) conjugation invariance for the fragmentation functions, the following equality holds:

[math]D_u^{\pi^+ \pm \pi^-} = D_u^{\pi^+} \pm D_u^{\pi^-} = D_d^{\pi^+ \pm \pi^-}[/math]


The polarized and unpolarized cross sections for pion electroproduction can be written in terms of valence quark distribution functions in the valence region as:

[math]\Delta \sigma_p^{\pi^+ \pm \pi^-} = \frac{1}{9}[4(\Delta u + \Delta \bar{u}) \pm (\Delta d + \Delta \bar{d})]D_u^{\pi^+ \pm \pi^-}[/math]


[math]\Delta \sigma_n^{\pi^+ \pm \pi^-} = \frac{1}{9}[4(\Delta d + \Delta d^-) \pm (\Delta u + \Delta u^-)]D_u^{\pi^+ \pm \pi^-}[/math]


[math]\Delta \sigma_{2H}^{\pi^+ \pm \pi^-} = \frac{5}{9}[(\Delta u + \Delta \bar{u}) \pm (\Delta d + \Delta \bar{d})]D_u^{\pi^+ \pm \pi^-}[/math]


and unpolarized:

[math]\sigma_p^{\pi^+ \pm \pi^-} = \frac{1}{9}[4( u + \bar{u}) \pm ( d + \bar{d})]D_u^{\pi^+ \pm \pi^-}[/math]


[math]\sigma_n^{\pi^+ \pm \pi^-} = \frac{1}{9}[4(d + \bar{d}) \pm (u + \bar{u})]D_u^{\pi^+ \pm \pi^-}[/math]


[math]\sigma_{2H}^{\pi^+ \pm \pi^-} = \frac{5}{9}[( u + \bar{u}) \pm ( d + \bar{d})]D_u^{\pi^+ \pm \pi^-}[/math]


In the valence region ([math]x_{B}\gt 0.3[/math]), where the sea quark contribution is minimized, the above asymmetries can be expressed in terms of polarized and unpolarized valence quark distributions:

[math]A_{1,p}^{\pi^+ \pm \pi^-} = \frac{4 \Delta u_v(x) \pm \Delta d_v(x)}{4u_v(x) \pm d_v(x)}[/math]


[math]A_{1,2H}^{\pi^+ \pm \pi^-} = \frac{\Delta u_v(x) + \Delta d_v(x)}{u_v(x) + d_v(x)}[/math]


The ratio of polarized to unpolarized valence up and down quark distributions may then be written as

[math]\frac{\Delta u_v}{u_v}(x,Q^2) = \frac{\Delta \sigma_p^{\pi^+ - \pi^-} + \Delta \sigma_{2H}^{\pi^+ - \pi^-}}{\sigma_p^{\pi^+ - \pi^-} + \sigma_{2H}^{\pi^+ - \pi^-}} (x,Q^2)[/math]


and

[math]\frac{\Delta d_v}{d_v}(x,Q^2) = \frac{\Delta \sigma_p^{\pi^+ - \pi^-} - 4\Delta \sigma_{2H}^{\pi^+ - \pi^-}}{\sigma_p^{\pi^+ - \pi^-} - 4\sigma_{2H}^{\pi^+ - \pi^-}} (x,Q^2)[/math]


The ratio of polarized to unpolarized valence quark distribution functions can be extracted using the last two equations.

Next to leading Order (NLO)

<ref name="Sissakian074032"> A.N. Sissakian, O. Yu. Shevchenko, and O.N. Ivanov Phys Rev D 70 (074032) 2004 https://arxiv.org/abs/hep-ph/0411243</ref>


Towards semi-inclusive deep inelastic scattering at next-to-next-to-leading order, Daniele Anderle https://arxiv.org/pdf/1612.01293.pdf


D. de Florian, R. Sassot, M. Epele, R. J. Herna ́ndez-Pinto, M. Stratmann. Phys. Rev. D 91 014035 (2015).

Global extraction of the parton-to-pion fragmentation functions at NLO accuracy in QCD R. J. Herna ́ndez-Pinto 2016 https://arxiv.org/pdf/1609.02455.pdf

2014Next-to-Leading Order QCD Factorization for Semi-Inclusive Deep Inelastic Scattering at Twist 4, Zhong-Bo Kang, Enke Wang, Xin-Nian Wang, and Hongxi Xing Phys. Rev. Lett. 112, 102001 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.102001

References

2009 talk by Xiodong Jiang, kinematic cuts identified (Q2 >1GeV2,W >2GeV,W' (missing mass of undetected hadrons) >1.5GeV,xF >0,pπ >2GeV/c) , http://www.int.washington.edu/talks/WorkShops/int_09_3/People/Jiang_X/Jiang.pdf


Bibliography

</references>

Documents

File:Christova Leader hep-ph-9907265.pdf

File:Sissakian PhysRevD70 074032 2004.pdf


https://twiki.cern.ch/twiki/bin/view/LHCPhysics/PDF


SIDIS cross sections

File:Asauryan nucle-ex1103.1649.pdf

Delta_D_over_D