Difference between revisions of "Lab 17 RS"

From New IAC Wiki
Jump to navigation Jump to search
 
(43 intermediate revisions by the same user not shown)
Line 15: Line 15:
  
 
{| border="2"  cellpadding="8" cellspacing="0"
 
{| border="2"  cellpadding="8" cellspacing="0"
|Characteristic |Symbol || Min || Max || Unit
+
|-
 +
!scope="col" | Characteristic
 +
!scope="col" | Symbol
 +
!scope="col" | Min
 +
!scope="col" | Max
 +
!scope="col" | Unit
 
|-
 
|-
 
| Zero-Gate-Voltage Drain Current ||<math> I_{DSS}</math> || 2.0 || 20 || mAdc
 
| Zero-Gate-Voltage Drain Current ||<math> I_{DSS}</math> || 2.0 || 20 || mAdc
 
|-
 
|-
| Gate-Source Cutoff Voltage|| <math>V_{GS(off)}</math> ||  - || -8.0 || Vdc  
+
| Gate-Source Cutoff Voltage || <math>V_{GS(off)}</math> ||  - || -8.0 || Vdc  
 
|-
 
|-
| || <math>P_{max}</math> || || ||
+
| Total Device Dissipation @ <math>T_A=25^oC</math>
 +
| <math>P_{max}</math>  
 +
| colspan="2" | 350
 +
| mW
 
|-
 
|-
| ||<math>R_G</math> || 3.3 M<math>\Omega</math> || ||
+
| Gait resistor
 +
| <math>R_G</math>
 +
| colspan="2" | 3.3
 +
| M<math>\Omega</math>
 
|-
 
|-
| ||<math>R_D</math> || 1.0 M<math>\Omega</math> || ||
+
| Drain resistor
 +
| <math>R_D</math>
 +
| colspan="2" | 1.0
 +
| k<math>\Omega</math>
 
|-
 
|-
| ||<math>y_{fs}</math> || || ||  
+
| Forward Transfer Admittance  || <math>y_{fs}</math> || 2000 || 7500 || <math>\mu</math>mhos
 
|-
 
|-
| ||<math>y_{is}</math> ||   || ||
+
| Input Admittance || <math>y_{is}</math> || - || 800 || <math>\mu</math>mhos
|-
 
| ||<math>y_{os}</math> ||  || ||
 
 
|-
 
|-
 +
| Output Conductance || <math>y_{os}</math> || - || 200 || <math>\mu</math>mhos
 
|}
 
|}
 
  
 
=2.) Construct the JFET circuit below.=
 
=2.) Construct the JFET circuit below.=
Line 56: Line 68:
  
  
[[File:Table01.png | 600 px]]
+
[[File:Table01.png | 550 px]]
  
[[File:Table02.png | 600 px]]
+
[[File:Table02.png | 550 px]]
  
[[File:Table03.png | 600 px]]
+
[[File:Table03.png | 550 px]]
  
[[File:Table04.png | 600 px]]
+
[[File:Table04.png | 550 px]]
  
  
Line 68: Line 80:
  
  
[[File:L17 id vs vgs.png | 1000 px]]
+
[[File:L17 id vs vgs.png | 800 px]]
 
 
 
 
  
 
=4.) Plot <math> I_D</math> -vs- <math>V_{GS}</math> (30 pnts)=
 
=4.) Plot <math> I_D</math> -vs- <math>V_{GS}</math> (30 pnts)=
Line 83: Line 93:
  
  
[[File:L17 id vs vgs 21.png | 1000 px]]
+
[[File:L17 id vs vgs 21.png | 800 px]]
  
  
Line 91: Line 101:
 
For common source configuration JFET:
 
For common source configuration JFET:
  
  <math>y_{fs} \equiv  \left ( \frac{\partial I_{out}}{\partial V_{in}} \right ) = \left ( \frac{\partial I_D}{\partial V_{GS}} \right )</math>
+
  <math>y_{fs} \equiv  \left ( \frac{\partial I_{out}}{\partial V_{in}} \right )_{V_{out}} = \left ( \frac{\partial I_D}{\partial V_{GS}} \right )_{V_{DS}}</math>
  
 
So to calculate <math>y_{fs}</math> we need to know the functional dependence of <math>I_D(V_{GS})</math>. Lets approximate this function by line using my measurements and plot above:
 
So to calculate <math>y_{fs}</math> we need to know the functional dependence of <math>I_D(V_{GS})</math>. Lets approximate this function by line using my measurements and plot above:
Line 101: Line 111:
 
  <math>I_D[mA] = (10.53 \pm 0.04)[mA] + (4.04 \pm 0.04)\cdot V_{GS}[V]</math>
 
  <math>I_D[mA] = (10.53 \pm 0.04)[mA] + (4.04 \pm 0.04)\cdot V_{GS}[V]</math>
  
So,
+
Also note that this line equation was obtained using about the same voltage <math>V_{DS}</math> in saturation region from my first measurements of <math>I_D</math> as function of <math>V_{DS}</math> for four different values of <math>V_{GS}</math>. So we can take the partial derivative of <math>I_D</math> with respect to <math>V_{GS}</math>  using the line equation above. Finally,
  
  <math>y_{fs} \equiv  \left ( \frac{\partial I_D}{\partial V_{GS}} \right ) = (4.04 \pm 0.04)\ \frac{mA}{V} =  (4.04 \pm 0.04)\ mS</math>
+
  <math>y_{fs} \equiv  \left ( \frac{\partial I_D}{\partial V_{GS}} \right )_{V_{DS}} = (4.04 \pm 0.04)\ \frac{mA}{V} =  (4.04 \pm 0.04)\ mS</math>
  
 
=Question=
 
=Question=
  
 
==Does <math>y_{fs}</math> depend on <math>I_D</math>? (10 pnts)==
 
==Does <math>y_{fs}</math> depend on <math>I_D</math>? (10 pnts)==
 +
 +
No. As we can see from calculation above <math>y_{fs}</math> is constant and does not depend from <math>I_D</math>. That is true if we are working in saturation region where the functional dependence of <math>I_D</math> with respect to <math>V_{GS}</math> is line so
 +
 +
<math>y_{fs} \equiv  \left ( \frac{\partial I_D}{\partial V_{GS}} \right )_{V_{DS}} = const</math>
 +
 +
If we are in active region of <math>I_D</math> as function of <math>V_{DS}</math> the functional form of <math>I_D</math> with respect to <math>V_{GS}</math> is not the line anymore and <math>y_{fs}</math> will depend on <math>I_D</math>.
 +
 +
  
  

Latest revision as of 16:41, 13 April 2011

Go Back to All Lab Reports


The JFET (Junction Field Effect Transistor n-channel)


File:JFET MPF102 DataSheet.pdf

JFET MPF102 Pinouts.png


1). Complete the table below for the JFET.

Characteristic Symbol Min Max Unit
Zero-Gate-Voltage Drain Current IDSS 2.0 20 mAdc
Gate-Source Cutoff Voltage VGS(off) - -8.0 Vdc
Total Device Dissipation @ TA=25oC Pmax 350 mW
Gait resistor RG 3.3 MΩ
Drain resistor RD 1.0 kΩ
Forward Transfer Admittance yfs 2000 7500 μmhos
Input Admittance yis - 800 μmhos
Output Conductance yos - 200 μmhos

2.) Construct the JFET circuit below.

TF EIM Lab17Circuit.png

3.) Plot measurements of ID -vs- VDS by varying Vdd for |VGS| = 0, 0.5, 1.0, 1.5 V. (40 pnts)

I have used the following resistors:

[math]R_G = (3.34 \pm 0.02)\ M\Omega[/math]
[math]R_D = (0.968 \pm 0.002)\ k\Omega[/math]

Below is the table with my measurements of voltages VDS and VRD and calculation of the current ID. Here I have used the meter to measure directly the voltage drop between the drain and source VDS and to measure the voltage drop on resistor RD.

So my calculated current becomes:

[math]I_D = \frac{V_{R_D}}{R_D}[/math].


Table01.png

Table02.png

Table03.png

Table04.png


And below I have plotted four curves ID as function of VDS for four different values of VGS


L17 id vs vgs.png

4.) Plot ID -vs- VGS (30 pnts)

For every measured VGS values I have picked up the current ID values in the middle of saturation region of each line as follow:


Table21.png


And below is my plot of ID -vs- VGS:


L17 id vs vgs 21.png


5.) Calculate yfs for your JFET (20 pnts)

For common source configuration JFET:

[math]y_{fs} \equiv  \left ( \frac{\partial I_{out}}{\partial V_{in}} \right )_{V_{out}} = \left ( \frac{\partial I_D}{\partial V_{GS}} \right )_{V_{DS}}[/math]

So to calculate yfs we need to know the functional dependence of ID(VGS). Lets approximate this function by line using my measurements and plot above:

L17 id vs vgs 22.png

The line equation is:

[math]I_D[mA] = (10.53 \pm 0.04)[mA] + (4.04 \pm 0.04)\cdot V_{GS}[V][/math]

Also note that this line equation was obtained using about the same voltage VDS in saturation region from my first measurements of ID as function of VDS for four different values of VGS. So we can take the partial derivative of ID with respect to VGS using the line equation above. Finally,

[math]y_{fs} \equiv  \left ( \frac{\partial I_D}{\partial V_{GS}} \right )_{V_{DS}} = (4.04 \pm 0.04)\ \frac{mA}{V} =  (4.04 \pm 0.04)\ mS[/math]

Question

Does yfs depend on ID? (10 pnts)

No. As we can see from calculation above yfs is constant and does not depend from ID. That is true if we are working in saturation region where the functional dependence of ID with respect to VGS is line so

yfs(IDVGS)VDS=const

If we are in active region of ID as function of VDS the functional form of ID with respect to VGS is not the line anymore and yfs will depend on ID.




Go Back to All Lab Reports Forest_Electronic_Instrumentation_and_Measurement