Difference between revisions of "Lab 5 RS"

From New IAC Wiki
Jump to navigation Jump to search
 
(37 intermediate revisions by the same user not shown)
Line 13: Line 13:
 
I choose the following values for <math>\mbox{L}</math> and <math>\mbox{C}</math>:
 
I choose the following values for <math>\mbox{L}</math> and <math>\mbox{C}</math>:
  
:<math>L=33\ \mu H</math>
+
:<math>\mbox{L}=33\ \mu H</math>
:<math>C=1.024\ \mu F</math>
+
:<math>\mbox{C}=1.024\ \mu F</math>
:<math>R=0.989\ k \Omega</math>
+
:<math>\mbox{R}=0.989\ k \Omega</math>
:<math>R_L=2.5 \Omega</math>
+
:<math>\mbox{R}_L=2.5\ \Omega</math>
  
 
So the resonance frequency is <math>\omega_0=\frac{1}{\sqrt{33\ \mu H \cdot 1.024\ \mu F}} = 172 \cdot 10^3\ \frac{\mbox{rad}}{\mbox{sec}}</math>
 
So the resonance frequency is <math>\omega_0=\frac{1}{\sqrt{33\ \mu H \cdot 1.024\ \mu F}} = 172 \cdot 10^3\ \frac{\mbox{rad}}{\mbox{sec}}</math>
Line 28: Line 28:
 
==Construct the LC circuit using a non-polar capacitor==
 
==Construct the LC circuit using a non-polar capacitor==
 
==Measure the Gain <math>\equiv \frac{V_{out}}{V_{in}}</math> as a function of frequency. (25 pnts)==
 
==Measure the Gain <math>\equiv \frac{V_{out}}{V_{in}}</math> as a function of frequency. (25 pnts)==
 +
 +
[[File:L5 LC table.png | 600 px]]
 +
 
==Compare the measured and theoretical values of the resonance frequency (<math>\omega_{L}</math>) (10 pnts)==
 
==Compare the measured and theoretical values of the resonance frequency (<math>\omega_{L}</math>) (10 pnts)==
  
==Questions==
 
  
1.Is there a value of <math>R</math> in which <math>V_{out} \approx V_{in}</math> at resonance. What is the value?(5 pnts)
+
Let's plot the data from table above:
 +
 
 +
[[File:L5 LC circuit.png | 900 px]]
 +
 
 +
 
 +
And let's zoom the graph above at resonance frequency:
 +
 
 +
[[File:L5 LC zoom.png | 900 px]]
 +
 
 +
 
 +
So the experimentally measured resonance frequency is:
 +
 
 +
<math>f = 27.7\ \mbox{kHz}</math>
 +
 
 +
And the predicted value of resonance frequency is:
 +
 +
<math>f = 27.4\ \mbox{kHz}</math>
 +
 
 +
The error is:
 +
 
 +
<math>Error = \left| \frac{f_{exp} - f_{theor}}{f_{theor}} \right| = \left| \frac{27.7 - 27.4}{27.4} \right|= 1.09\ %</math>
 +
 
 +
 
 +
The error is small so I was lucky
 +
 
 +
==Question. What is the bandwidth of the above circuit? (5 pnts)==
 +
 
 +
 
 +
 
 +
From the plot above we have <math>\left(\frac{V_{out}}{_{Vin}} \right)_{max} =  0.0138 </math>
 +
 
 +
The bandwidth defined as the width from <math>\omega_1</math> to <math>\omega_2</math> where the amplitude of signal drop down to <math>\frac{1}{\sqrt{2}}</math>.
 +
 
 +
At this point <math>\left(\frac{V_{out}}{V_{in}} \right) =  \frac{0.0138}{\sqrt{2}}  = 0.00976</math>. Let's plot this line and calculate the bandwidth.
 +
 
 +
 
 +
[[File:L5 LC bandwidth.png | 900 px]]
 +
 
 +
 
 +
So the bandwidth of the above circuit is
 +
 
 +
<math>\delta f = 37\ \mbox{kHz}</math>
  
 
=The RLC cicuit=
 
=The RLC cicuit=
Line 38: Line 81:
 
==Design and construct a '''series''' LRC circuit==
 
==Design and construct a '''series''' LRC circuit==
 
==Measure and Graph the Gain as a function of the oscillating input voltage frequency. (25 pnts)==
 
==Measure and Graph the Gain as a function of the oscillating input voltage frequency. (25 pnts)==
 +
 +
:In the table below are my measurements for voltage gain and phase shift:
 +
 +
[[File:L5 RLC table.png | 400 px]]
 +
 +
:And let's graph the gain as a function of the input voltage frequency:
 +
 +
[[File:L5 RLC circuit.png | 800 px]]
 +
 
==Measure and Graph the Phase Shift as a function of the oscillating input voltage frequency. (25 pnts)==
 
==Measure and Graph the Phase Shift as a function of the oscillating input voltage frequency. (25 pnts)==
 +
 +
:My phase shift measurements presented in the table above. And let's graph the phase shift as a function of the input voltage frequency:
 +
 +
[[File:L5 RLC circuit phase m1.png | 800 px]]
 +
 +
<br><br><br><br>
 +
 
==Questions==
 
==Questions==
 
===What is the current <math>I</math> at resonance? (5 pnts)===
 
===What is the current <math>I</math> at resonance? (5 pnts)===
 +
 +
[[File:Question1.png | 800 px]]
 +
 
===What is the current as <math>\nu \rightarrow \infty</math>? (5 pnts)===
 
===What is the current as <math>\nu \rightarrow \infty</math>? (5 pnts)===
 +
 +
[[File:Question2.png | 400 px]]
 +
  
  

Latest revision as of 15:23, 7 February 2011

Go Back to All Lab Reports


LC Resonance circuits

The LC circuit

TF EIM Lab5 LC.png

Design a parallel LC resonant circuit with a resonant frequency between 50-200 kHz. use [math]L[/math] = 10 - 100 [math]\mu H[/math], R = 1k [math]\Omega[/math]

[math]\omega_0=\frac{1}{\sqrt{\mbox{LC}}}[/math]

I choose the following values for [math]\mbox{L}[/math] and [math]\mbox{C}[/math]:

[math]\mbox{L}=33\ \mu H[/math]
[math]\mbox{C}=1.024\ \mu F[/math]
[math]\mbox{R}=0.989\ k \Omega[/math]
[math]\mbox{R}_L=2.5\ \Omega[/math]

So the resonance frequency is [math]\omega_0=\frac{1}{\sqrt{33\ \mu H \cdot 1.024\ \mu F}} = 172 \cdot 10^3\ \frac{\mbox{rad}}{\mbox{sec}}[/math]

[math]f=\frac{\omega_0}{2\pi} = 27.4\ \mbox{kHz}[/math]

And

[math]\mbox{Q} = \frac{1}{\mbox{R}} \sqrt{\frac{\mbox{L}}{\mbox{C}}} = 2.27[/math]

Construct the LC circuit using a non-polar capacitor

Measure the Gain [math]\equiv \frac{V_{out}}{V_{in}}[/math] as a function of frequency. (25 pnts)

L5 LC table.png

Compare the measured and theoretical values of the resonance frequency ([math]\omega_{L}[/math]) (10 pnts)

Let's plot the data from table above:

L5 LC circuit.png


And let's zoom the graph above at resonance frequency:

L5 LC zoom.png


So the experimentally measured resonance frequency is:

[math]f = 27.7\ \mbox{kHz}[/math]

And the predicted value of resonance frequency is:

[math]f = 27.4\ \mbox{kHz}[/math]

The error is:

[math]Error = \left| \frac{f_{exp} - f_{theor}}{f_{theor}} \right| = \left| \frac{27.7 - 27.4}{27.4} \right|= 1.09\ %[/math]


The error is small so I was lucky

Question. What is the bandwidth of the above circuit? (5 pnts)

From the plot above we have [math]\left(\frac{V_{out}}{_{Vin}} \right)_{max} = 0.0138 [/math]

The bandwidth defined as the width from [math]\omega_1[/math] to [math]\omega_2[/math] where the amplitude of signal drop down to [math]\frac{1}{\sqrt{2}}[/math].

At this point [math]\left(\frac{V_{out}}{V_{in}} \right) = \frac{0.0138}{\sqrt{2}} = 0.00976[/math]. Let's plot this line and calculate the bandwidth.


L5 LC bandwidth.png


So the bandwidth of the above circuit is

[math]\delta f = 37\ \mbox{kHz}[/math]

The RLC cicuit

TF EIM Lab5 RLC.png

Design and construct a series LRC circuit

Measure and Graph the Gain as a function of the oscillating input voltage frequency. (25 pnts)

In the table below are my measurements for voltage gain and phase shift:

L5 RLC table.png

And let's graph the gain as a function of the input voltage frequency:

L5 RLC circuit.png

Measure and Graph the Phase Shift as a function of the oscillating input voltage frequency. (25 pnts)

My phase shift measurements presented in the table above. And let's graph the phase shift as a function of the input voltage frequency:

L5 RLC circuit phase m1.png





Questions

What is the current [math]I[/math] at resonance? (5 pnts)

Question1.png

What is the current as [math]\nu \rightarrow \infty[/math]? (5 pnts)

Question2.png



Forest_Electronic_Instrumentation_and_Measurement

Go Back to All Lab Reports