Difference between revisions of "Lab 3 RS"
(5 intermediate revisions by the same user not shown) | |||
Line 82: | Line 82: | ||
Theoretical break frequency: <math>12.13\ \mbox{kHz}</math> | Theoretical break frequency: <math>12.13\ \mbox{kHz}</math> | ||
− | |||
− | |||
The fit line equation from the plot above is <math>\ y=1.071-1.005\cdot x</math>. | The fit line equation from the plot above is <math>\ y=1.071-1.005\cdot x</math>. | ||
Line 135: | Line 133: | ||
Because a DC circuit doesn't have any oscillation there are no any phase shift. | Because a DC circuit doesn't have any oscillation there are no any phase shift. | ||
+ | |||
+ | For a very high frequency input the phase shift is -90 degree (see plot in question 6) | ||
==6. Calculate and expression for the phase shift <math>\theta</math> as a function of <math>\nu</math>, <math>R</math>, <math>C</math> and graph <math>\theta</math> -vs <math>\nu</math>. (20 pnts)== | ==6. Calculate and expression for the phase shift <math>\theta</math> as a function of <math>\nu</math>, <math>R</math>, <math>C</math> and graph <math>\theta</math> -vs <math>\nu</math>. (20 pnts)== |
Latest revision as of 05:23, 28 January 2011
- RC Low-pass filter
1-50 kHz filter (20 pnts)
1. Design a low-pass RC filter with a break point between 1-50 kHz. The break point is the frequency at which the filter starts to attenuate the AC signal. For a Low pass filter, AC signals with a frequency above 1-50 kHz will start to be attenuated (not passed)
- To design low-pass RC filter I had:
So
2. Now construct the circuit using a non-polar capacitor
3. Use a sinusoidal variable frequency oscillator to provide an input voltage to your filter
4. Measure the input
and output voltages for at least 8 different frequencies which span the frequency range from 1 Hz to 1 MHz0.1 | 5.0 | 5.0 | 1.0 |
1.0 | 4.2 | 4.2 | 1.0 |
2.0 | 3.2 | 3.1 | 0.97 |
5.0 | 1.8 | 1.6 | 0.89 |
10.0 | 1.14 | 0.88 | 0.77 |
16.7 | 0.90 | 0.54 | 0.60 |
20.0 | 0.88 | 0.48 | 0.54 |
25.0 | 0.82 | 0.38 | 0.46 |
33.3 | 0.78 | 0.28 | 0.36 |
50.0 | 0.76 | 0.18 | 0.24 |
100.0 | 0.75 | 0.09 | 0.12 |
125.0 | 0.74 | 0.07 | 0.095 |
200.0 | 0.75 | 0.04 | 0.053 |
333.3 | 0.76 | 0.03 | 0.039 |
200.0 | 0.76 | 0.03 | 0.039 |
1000.0 | 0.78 | 0.06 | 0.077 |
5. Graph the
-vs-phase shift (10 pnts)
- measure the phase shift between and as a function of frequency . Hint: you could use as an external trigger and measure the time until reaches a max on the scope .
See question 4 about my phase shift measurements
Questions
1. Compare the theoretical and experimentally measured break frequencies. (5 pnts)
method 1. Using fitting line
Theoretical break frequency:
The fit line equation from the plot above is
. From intersection point of line with x-axis we find:
The error is:
method 2. Using the -3 dB point
At the break point the voltage gain is down by 3 dB relative to the gain of unity at zero frequency. So the value of
. Using this value I found from plot above . So . The error in this case is2. Calculate and expression for as a function of , , and . The Gain is defined as the ratio of to .(5 pnts)
We have:
Dividing second equation into first one we get the voltage gain:
And we are need the real part:
3. Sketch the phasor diagram for , , , and . Put the current along the real voltage axis. (30 pnts)
4. Compare the theoretical and experimental value for the phase shift . (5 pnts)
The experimental phase shift is
The theoretical phase shift is
5. What is the phase shift for a DC input and a very-high frequency input?(5 pnts)
Because a DC circuit doesn't have any oscillation there are no any phase shift.
For a very high frequency input the phase shift is -90 degree (see plot in question 6)
6. Calculate and expression for the phase shift as a function of , , and graph -vs . (20 pnts)
From the phasor diagram above (question 3) the angle between vectors
and given by