Difference between revisions of "Lab 23 TF EIM"

From New IAC Wiki
Jump to navigation Jump to search
 
(35 intermediate revisions by 2 users not shown)
Line 1: Line 1:
Inverting OP Amp  
+
=Inverting OP Amp =
  
#Construct the inverting amplifier according to the wiring diagram below.
+
1. Construct the inverting amplifier according to the wiring diagram below.
#insert a 0.1 <math>\mu</math>F capacitor between ground and the OP power supply input pin.
+
 
 +
[[File:TF_EIM_Lab23.png| 200 px]]
 +
 
 +
Here is the data sheet for the 741 Op Amp
 +
 
 +
[[File:LM741CN_OpAmp.pdf]]
 +
 
 +
 
 +
Use <math>R_1 = 1k\Omega</math> and <math>R_2 = 10 k\Omega</math> as starting values.
 +
 
 +
2. Insert a 0.01 <math>\mu</math>F capacitor between ground and both Op Amp power supply input pins.  The Power supply connections for the Op amp are not shown in the above circuit diagram, check the data sheet.
  
 
= Gain measurements=
 
= Gain measurements=
  
#Measure the gain as a function of frequency between 100 Hz and 2 MHz for three values of R_2 = 10 k<math>\Omega</math>, 100 k<math>\Omega</math>, 1M<math>\Omega</math>.
+
1.) Measure the gain as a function of frequency between 100 Hz and 2 MHz for three values of <math>R_2</math> = 10 k<math>\Omega</math>, 100 k<math>\Omega</math>, 1M<math>\Omega</math>.  Keep <math>R_1</math> at <math>1k\Omega</math>.
#Graph  the above measurements with the Gain in units of decibels (dB) and with a logarithmic scale for the frequency axis.
+
 
 +
2.)Graph  the above measurements with the Gain in units of decibels (dB) and with a logarithmic scale for the frequency axis.
  
 
=Impedance=
 
=Impedance=
Line 15: Line 26:
 
#Measure <math>R_{out}</math> for the 10 fold and 100 fold amplifier  at ~100 Hz and 10 kHz frequency.  Be sure to keep the output (<math>V_{out}</math>) undistorted
 
#Measure <math>R_{out}</math> for the 10 fold and 100 fold amplifier  at ~100 Hz and 10 kHz frequency.  Be sure to keep the output (<math>V_{out}</math>) undistorted
  
=
+
= <math>V_{io}</math> and <math>I_{B}</math>=
 +
 
 +
;<math>V_{out}= -\frac{R_2}{R_1} V_1 + \left ( 1 + \frac{R_2}{R_1}\right)V_{io}  + R_2 I_B</math>
 +
 
 +
Use the above equation and two measurements of <math>V_{out}</math>, <math>R_1</math>, and <math>R_2</math>  to extract <math>V_{io}</math> and <math>I_B</math>.
 +
 
 +
#measure <math>V_{out}</math> for <math>R_1</math> = 1 k<math>\Omega</math>, <math>R_2</math> = 100 k<math>\Omega</math>, and<math> V_{in}</math>=0 (grounded).
 +
#measure <math>V_{out}</math> for <math>R_1</math> = 10 k<math>\Omega</math>, <math>R_2</math> = 1 M<math>\Omega</math>, and<math> V_{in}</math>=0 (grounded).
 +
#You can now construct 2 equations with 2 unknowns <math>V_{io}</math> and <math>I_B</math>.
 +
 
 +
= <math>I_{io}</math>=
 +
 
 +
Now we will put in a pull up resistor <math>R_3= \frac{R_1 R_2}{R_1+R_2}</math>  as shown below.
 +
 
 +
[[File:TF_EIM_Lab23a.png | 200 px]]
 +
 
 +
Instead of the current <math>I_B</math> we have the current <math>I_{io}</math>
 +
 
 +
;<math>V_{out}= -\frac{R_2}{R_1} V_1 + \left ( 1 + \frac{R_2}{R_1}\right)V_{io}  + R_2 I_{io}</math>
 +
 
 +
Use the same technique and resistors from the previous section to construct 2 equations and 2 unknowns and extract <math>I_{io}</math>, keep <math>V_{in}</math>=0.
 +
 
 +
= The offset Null Circuit=
 +
 
 +
[[File:TF_EIM_Lab23_b.png | 200 px]]
 +
 
 +
#Construct the offset null circuit above.
 +
#Adjust the potentiometer  to minimize <math>V_{out}</math> with <math>V_{in}=0</math>.
 +
#Use a scope to measure the output noise.
 +
 
 +
 
 +
=Slew rate=
 +
 
 +
Measure the slew and compare it to the factory spec.
 +
 
 +
=Power Supply Rejection Ratio=
 +
#Set <math>V_{in}</math> = 0.
 +
#Measure <math>\Delta V_{out}</math> while changing <math>\Delta V_{cc}</math>
 +
 
 +
=Output voltage RMS noise <math>\Delta V_{out}^{RMS}</math>=
 +
 
 +
Measure the RMS noise in <math>V_{out}</math> when <math>V_{in}</math> = 0 . 
 +
 
 +
= Capacitors=
 +
 
 +
;Revert back to the pull up resistor
 +
 
 +
==Capacitor in parallel with <math>R_2</math>==
 +
 
 +
[[File:TF_EIM_Lab23_c.png | 200 px]]
 +
 
 +
#Select a capacitor such that<math> \frac{1}{\omega C_2} \approx R_2</math> when <math>\omega</math>= 10 kHz.
 +
#Add the capacitor in parallel to <math>R_2</math> so you have the circuit shown above.
 +
#Use a pulse generator to input a sinusoidal voltage <math>V_{in}</math>
 +
# Measure the Gain as a function of the <math>V_{in}</math> frequency and plot it.
 +
 
 +
==Capacitor in series with R_1==
 +
 
 +
[[File:TF_EIM_Lab23_d.png | 200 px]]
 +
 
 +
#Select a capacitor such that<math> \frac{1}{\omega C_2} \approx R_1</math> when <math>\omega</math>= 1 kHz.
 +
#Add the capacitor in series to <math>R_1</math> so you have the circuit shown above.
 +
#Use a pulse generator to input a sinusoidal voltage <math>V_{in}</math>
 +
#Measure the Gain as a function of the <math>V_{in}</math> frequency and plot it.
 +
 
  
 
[[Forest_Electronic_Instrumentation_and_Measurement]]
 
[[Forest_Electronic_Instrumentation_and_Measurement]]

Latest revision as of 20:48, 22 April 2011

Inverting OP Amp

1. Construct the inverting amplifier according to the wiring diagram below.

TF EIM Lab23.png

Here is the data sheet for the 741 Op Amp

File:LM741CN OpAmp.pdf


Use R1=1kΩ and R2=10kΩ as starting values.

2. Insert a 0.01 μF capacitor between ground and both Op Amp power supply input pins. The Power supply connections for the Op amp are not shown in the above circuit diagram, check the data sheet.

Gain measurements

1.) Measure the gain as a function of frequency between 100 Hz and 2 MHz for three values of R2 = 10 kΩ, 100 kΩ, 1MΩ. Keep R1 at 1kΩ.

2.)Graph the above measurements with the Gain in units of decibels (dB) and with a logarithmic scale for the frequency axis.

Impedance

Input Impedance

  1. Measure Rin for the 10 fold and 100 fold amplifier at ~100 Hz and 10 kHz frequency.

Output Impedance

  1. Measure Rout for the 10 fold and 100 fold amplifier at ~100 Hz and 10 kHz frequency. Be sure to keep the output (Vout) undistorted

Vio and IB

Vout=R2R1V1+(1+R2R1)Vio+R2IB

Use the above equation and two measurements of Vout, R1, and R2 to extract Vio and IB.

  1. measure Vout for R1 = 1 kΩ, R2 = 100 kΩ, andVin=0 (grounded).
  2. measure Vout for R1 = 10 kΩ, R2 = 1 MΩ, andVin=0 (grounded).
  3. You can now construct 2 equations with 2 unknowns Vio and IB.

Iio

Now we will put in a pull up resistor R3=R1R2R1+R2 as shown below.

TF EIM Lab23a.png

Instead of the current IB we have the current Iio

Vout=R2R1V1+(1+R2R1)Vio+R2Iio

Use the same technique and resistors from the previous section to construct 2 equations and 2 unknowns and extract Iio, keep Vin=0.

The offset Null Circuit

TF EIM Lab23 b.png

  1. Construct the offset null circuit above.
  2. Adjust the potentiometer to minimize Vout with Vin=0.
  3. Use a scope to measure the output noise.


Slew rate

Measure the slew and compare it to the factory spec.

Power Supply Rejection Ratio

  1. Set Vin = 0.
  2. Measure ΔVout while changing ΔVcc

Output voltage RMS noise ΔVRMSout

Measure the RMS noise in Vout when Vin = 0 .

Capacitors

Revert back to the pull up resistor

Capacitor in parallel with R2

TF EIM Lab23 c.png

  1. Select a capacitor such that1ωC2R2 when ω= 10 kHz.
  2. Add the capacitor in parallel to R2 so you have the circuit shown above.
  3. Use a pulse generator to input a sinusoidal voltage Vin
  4. Measure the Gain as a function of the Vin frequency and plot it.

Capacitor in series with R_1

TF EIM Lab23 d.png

  1. Select a capacitor such that1ωC2R1 when ω= 1 kHz.
  2. Add the capacitor in series to R1 so you have the circuit shown above.
  3. Use a pulse generator to input a sinusoidal voltage Vin
  4. Measure the Gain as a function of the Vin frequency and plot it.


Forest_Electronic_Instrumentation_and_Measurement