Difference between revisions of "Lab 3 TF EIM"

From New IAC Wiki
Jump to navigation Jump to search
(Created page with 'RC Low-pass filter = 1-50 kHz filter= # Design and construct a low-pass RC filter with a break point between 1-50 kHz. The break point is the frequency at which the filter star...')
 
 
(37 intermediate revisions by 2 users not shown)
Line 1: Line 1:
RC Low-pass filter
+
;RC Low-pass filter
  
= 1-50 kHz filter=
+
= 1-50 kHz filter (20 pnts)=
# Design and construct a low-pass RC filter with a break point between 1-50 kHz.  The break point is the frequency at which the filter starts to attenuate the AC signal.  For a Low pass filter, AC signals with a frequency above 1-50 kHz will start to be attenuated (not passed).
+
1.) Design a low-pass RC filter with a break point between 1-50 kHz.  The break point is the frequency at which the filter starts to attenuate the AC signal.  For a Low pass filter, AC signals with a frequency above 1-50 kHz will start to be attenuated (not passed).
#Now construct the circuit using a non-polar capacitor.
 
#use a sinusoidal variable frequency oscillator to provide an input voltage to your filter.
 
#Measure the input and output voltages for at least 8 different frequencies which span the frequency range from 1 Hz to 1 MHz.
 
#Graph the <math>\log \left(\frac{V_out}{V_in} \right)</math> -vs- <math>\log (\nu}</math>
 
  
=phase shift=
+
Enter your values for<math> R, C,</math> and <math>\omega</math>
 +
{| border="3"  cellpadding="20" cellspacing="0"
 +
|R||C || <math> \omega</math> || <math>\nu</math>
 +
|-
 +
|  || || ||
 +
|}
 +
 
 +
 
 +
2.)Now construct the circuit using a non-polar capacitor.
 +
 
 +
[[File:TF_EIM_Lab3.png | 400 px]]
 +
 
 +
3.)use a sinusoidal variable frequency oscillator to provide an input voltage to your filter.
 +
 
 +
4.)Measure the input <math>(V_{in})</math> and output <math>(V_{out})</math> voltages for at least 8 different frequencies<math> (\nu)</math>  which span the frequency range from 1 Hz to 1 MHz.
 +
 
 +
 
 +
 
 +
{| border="3"  cellpadding="20" cellspacing="0"
 +
|<math>\nu</math> ||<math>V_{in}</math> || <math>V_{out}</math> || <math>\frac{V_{out}}{V_{in}}</math>
 +
|-
 +
| Hz || Volts || Volts ||
 +
|-
 +
|  || || ||
 +
|-
 +
|  || || ||
 +
|-
 +
|  || || ||
 +
|-
 +
|  || || ||
 +
|-
 +
|  || || ||
 +
|-
 +
|  || || ||
 +
|-
 +
|  || || ||
 +
|-
 +
|  || || ||
 +
|-
 +
|}
 +
 
 +
5.) Graph the <math>\log \left(\frac{V_{out}}{V_{in}} \right)</math> -vs- <math>\log (\nu)</math>
 +
 
 +
=phase shift (10 pnts)=
 +
#measure the phase shift between <math>V_{in}</math> and <math>V_{out}</math> as a function of frequency <math>\nu</math>.  Hint: you could use<math> V_{in}</math> as an external trigger and measure the time until <math>V_{out}</math> reaches a max on the scope <math>(\sin(\omega t + \phi) = \sin\left ( \omega\left [t + \frac{\phi}{\omega}\right]\right )= \sin\left ( \omega\left [t + \delta t \right] \right ))</math>.
  
 
=Questions=
 
=Questions=
 +
 +
#Compare the theoretical and experimentally measured break frequencies. (5 pnts)
 +
#Calculate an expression for <math>\frac{V_{out}}{ V_{in}}</math> as a function of <math>\nu</math>, <math>R</math>, and <math>C</math>.  The Gain is defined as the ratio of <math>V_{out}</math> to <math>V_{in}</math>.(5 pnts)
 +
#Sketch the phasor diagram for <math>V_{in}</math>,<math> V_{out}</math>, <math>V_{R}</math>, and <math>V_{C}</math>.(30 pnts)
 +
#Calculate an expression for the phase shift <math>\theta</math> as a function of <math>\nu</math>, <math>R</math>, <math>C</math> and graph <math>\theta</math> -vs <math>\nu</math>. (20 pnts)
 +
#Compare the theoretical and experimental value for the phase shift <math>\theta</math>. (5 pnts)
 +
# what is the phase shift <math>\theta</math> for a DC input (the limit as frequency goes to zero)  and a very-high frequency input?(5 pnts)
 +
 +
 +
[[Forest_Electronic_Instrumentation_and_Measurement]]

Latest revision as of 17:59, 2 February 2015

RC Low-pass filter

1-50 kHz filter (20 pnts)

1.) Design a low-pass RC filter with a break point between 1-50 kHz. The break point is the frequency at which the filter starts to attenuate the AC signal. For a Low pass filter, AC signals with a frequency above 1-50 kHz will start to be attenuated (not passed).

Enter your values for[math] R, C,[/math] and [math]\omega[/math]

R C [math] \omega[/math] [math]\nu[/math]


2.)Now construct the circuit using a non-polar capacitor.

TF EIM Lab3.png

3.)use a sinusoidal variable frequency oscillator to provide an input voltage to your filter.

4.)Measure the input [math](V_{in})[/math] and output [math](V_{out})[/math] voltages for at least 8 different frequencies[math] (\nu)[/math] which span the frequency range from 1 Hz to 1 MHz.


[math]\nu[/math] [math]V_{in}[/math] [math]V_{out}[/math] [math]\frac{V_{out}}{V_{in}}[/math]
Hz Volts Volts

5.) Graph the [math]\log \left(\frac{V_{out}}{V_{in}} \right)[/math] -vs- [math]\log (\nu)[/math]

phase shift (10 pnts)

  1. measure the phase shift between [math]V_{in}[/math] and [math]V_{out}[/math] as a function of frequency [math]\nu[/math]. Hint: you could use[math] V_{in}[/math] as an external trigger and measure the time until [math]V_{out}[/math] reaches a max on the scope [math](\sin(\omega t + \phi) = \sin\left ( \omega\left [t + \frac{\phi}{\omega}\right]\right )= \sin\left ( \omega\left [t + \delta t \right] \right ))[/math].

Questions

  1. Compare the theoretical and experimentally measured break frequencies. (5 pnts)
  2. Calculate an expression for [math]\frac{V_{out}}{ V_{in}}[/math] as a function of [math]\nu[/math], [math]R[/math], and [math]C[/math]. The Gain is defined as the ratio of [math]V_{out}[/math] to [math]V_{in}[/math].(5 pnts)
  3. Sketch the phasor diagram for [math]V_{in}[/math],[math] V_{out}[/math], [math]V_{R}[/math], and [math]V_{C}[/math].(30 pnts)
  4. Calculate an expression for the phase shift [math]\theta[/math] as a function of [math]\nu[/math], [math]R[/math], [math]C[/math] and graph [math]\theta[/math] -vs [math]\nu[/math]. (20 pnts)
  5. Compare the theoretical and experimental value for the phase shift [math]\theta[/math]. (5 pnts)
  6. what is the phase shift [math]\theta[/math] for a DC input (the limit as frequency goes to zero) and a very-high frequency input?(5 pnts)


Forest_Electronic_Instrumentation_and_Measurement