Difference between revisions of "FC Analysis"

From New IAC Wiki
Jump to navigation Jump to search
 
(14 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
=FC analysis using ADC channel current distribution=
 
=FC analysis using ADC channel current distribution=
 
For each ADC channel:
 
For each ADC channel:
  <math> ADCSum^{channel}=\sum_{i=1}^{pulses}{ADC_{pulse}^{channel}};</math><br>
+
  <math> ADCSum^{channel}=\sum_{i=1}^{pulses}{ADC_{pulse}^{channel}}</math><br>
  <math> ADCErr^{channel}=\sqrt{\frac{\sum_{i=1}^{pulses}{ADC_{pulse}^{channel}}}{\sqrt{pulses}}};</math>
+
  <math> ADCErr^{channel}=\sqrt{\frac{\sum_{i=1}^{pulses}{ADC_{pulse}^{channel}}}{pulses}}</math><br>
 
 
For distribution over all beam pulses:
 
<math> ADC_{ave}=\frac{\sum_{i=1}^{pulses}{ADC_{avg}^{pulse}}}{pulses};</math><br>
 
<math> ADC_{sigma}={ \sqrt{\frac{1}{pulses}\sum_{i=1}^{pulses}{\left(ADC_{avg}^{pulse} - ADC_{avg}\right)^{2}}}};</math>
 
 
 
 
 
 
 
 
 
 
 
  
 +
For distribution over all ADC channel:
 +
<math> ADC^{avg}=\frac{\sum_{i=1}^{16}{ADCSum^{channel}*i}}{\sum_{i=1}^{16}{ADC_{i}}}</math><br>
 +
<math> ADC^{err}=\frac{\sum_{i=1}^{16}{ADCErr^{channel}*i}}{\sum_{i=1}^{16}{ADC_{i}}}</math><br>
  
  
Line 20: Line 14:
  
 
For each beam pulse:
 
For each beam pulse:
  <math> ADC_{avg}^{pulse}=\frac{\sum_{i=1}^{16}{ADC_{i}*i}}{\sum_{i=1}^{16}{ADC_{i}}};</math>
+
  <math> ADC^{avg}_{pulse}=\frac{\sum_{i=1}^{16}{ADC_{i}*i}}{\sum_{i=1}^{16}{ADC_{i}}}</math>
  
 
For distribution over all beam pulses:
 
For distribution over all beam pulses:
  <math> ADC_{ave}=\frac{\sum_{i=1}^{pulses}{ADC_{avg}^{pulse}}}{pulses};</math><br>
+
  <math> ADC^{avg}=\frac{\sum_{i=1}^{pulses}{ADC^{avg}_{pulse}}}{pulses}</math><br>
  <math> ADC_{sigma}={ \sqrt{\frac{1}{pulses}\sum_{i=1}^{pulses}{\left(ADC_{avg}^{pulse} - ADC_{avg}\right)^{2}}}};</math>
+
  <math> ADC^{err}={ \sqrt{\frac{1}{pulses}\sum_{i=1}^{pulses}{\left(ADC^{avg}_{pulse} - ADC^{avg}\right)^{2}}}}</math>
  
 
Here is:<br>
 
Here is:<br>
Line 39: Line 33:
 
[[File:1461_1.png]][[File:1465_1.png]]<br><br>
 
[[File:1461_1.png]][[File:1465_1.png]]<br><br>
  
 +
=3D Faraday cup plot=
 
Below is the plot of the charge in Faraday cup (pC) as a function of magnet current (vertical axis, A) (basically magnetic field)  and ADC (horizontal axis).
 
Below is the plot of the charge in Faraday cup (pC) as a function of magnet current (vertical axis, A) (basically magnetic field)  and ADC (horizontal axis).
  
 
[[File:Far.jpg]]
 
[[File:Far.jpg]]
 +
 +
=Faraday cup ADC channel distribution=
 +
=Faraday cup rain=
 +
  
 
[http://wiki.iac.isu.edu/index.php/FC_Analysis Go Up]
 
[http://wiki.iac.isu.edu/index.php/FC_Analysis Go Up]

Latest revision as of 03:57, 5 April 2010

Go Back

FC analysis using ADC channel current distribution

For each ADC channel:

[math] ADCSum^{channel}=\sum_{i=1}^{pulses}{ADC_{pulse}^{channel}}[/math]
[math] ADCErr^{channel}=\sqrt{\frac{\sum_{i=1}^{pulses}{ADC_{pulse}^{channel}}}{pulses}}[/math]

For distribution over all ADC channel:

[math] ADC^{avg}=\frac{\sum_{i=1}^{16}{ADCSum^{channel}*i}}{\sum_{i=1}^{16}{ADC_{i}}}[/math]
[math] ADC^{err}=\frac{\sum_{i=1}^{16}{ADCErr^{channel}*i}}{\sum_{i=1}^{16}{ADC_{i}}}[/math]


FC analysis using pulse by pulse ADC channel mean value distribution

For each beam pulse:

[math] ADC^{avg}_{pulse}=\frac{\sum_{i=1}^{16}{ADC_{i}*i}}{\sum_{i=1}^{16}{ADC_{i}}}[/math]

For distribution over all beam pulses:

[math] ADC^{avg}=\frac{\sum_{i=1}^{pulses}{ADC^{avg}_{pulse}}}{pulses}[/math]
[math] ADC^{err}={ \sqrt{\frac{1}{pulses}\sum_{i=1}^{pulses}{\left(ADC^{avg}_{pulse} - ADC^{avg}\right)^{2}}}}[/math]

Here is:
1. ADC# = bridge#
2. Pulse# = ReadOut# = Entry# = Event#

FC data 23.png

FC plot 2 4.png



Some examples of ADC mean value distribution. Here are:
1. x axis: ADC mean value for one pulse
2. y axis: number of pulse w/ that ADC mean value
1477 1.png1473 1.png
1461 1.png1465 1.png

3D Faraday cup plot

Below is the plot of the charge in Faraday cup (pC) as a function of magnet current (vertical axis, A) (basically magnetic field) and ADC (horizontal axis).

Far.jpg

Faraday cup ADC channel distribution

Faraday cup rain

Go Up