Difference between revisions of "Forest AngMomRecoupling"

From New IAC Wiki
Jump to navigation Jump to search
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
The recoupling of two subsystems <math>\psi</math> with angular momenta <math>j_1</math> and <math>j_2</math> to a new system<math> \Psi</math> with total angular momentum <math>J</math> is written as
 
The recoupling of two subsystems <math>\psi</math> with angular momenta <math>j_1</math> and <math>j_2</math> to a new system<math> \Psi</math> with total angular momentum <math>J</math> is written as
  
<math>\Psi^{J}_{M} = \sum_{m_1,m_2} C^{j_1,j_2,J}_{m_1,m_2,M} \psi^{j_1}_{m_1} \psi^{j_2}_{m_2}</math>
+
<math>\Psi^{J}_{M} = \sum_{m_1,m_2} C^{j_1,j_2,J}_{m_1,m_2,M} \psi^{j_1}_{m_1} \psi^{j_2}_{m_2}</math> = expansion of the systems total angular momentum in terms of the uncoupled original basis states of each individual constituent
  
  
Line 10: Line 10:
 
<math>C^{1,\;\;\frac{1}{2},\frac{3}{2}}_{1,-\frac{1}{2},\frac{1}{2}}= \frac{1}{\sqrt{3}}</math>
 
<math>C^{1,\;\;\frac{1}{2},\frac{3}{2}}_{1,-\frac{1}{2},\frac{1}{2}}= \frac{1}{\sqrt{3}}</math>
  
<math>C^{1,\;\;\frac{1}{2},\frac{1}{2}}_{1,-\frac{1}{2},\frac{1}{2}}= 1</math>
+
<math>C^{1,\;\;\frac{1}{2},\frac{3}{2}}_{0,\frac{1}{2},\frac{1}{2}}= \frac{2}{\sqrt{3}}</math>
  
 +
<math>C^{1,\;\;\frac{1}{2},\frac{1}{2}}_{1,-\frac{1}{2},\frac{1}{2}}= \frac{2}{\sqrt{3}}</math>
 +
 +
<math>C^{1,\;\;\frac{1}{2},\frac{1}{2}}_{0,\frac{1}{2},\frac{1}{2}}= -\frac{1}{\sqrt{3}}</math>
 +
 +
 +
<math>\Gamma_1 = \int_0^{x_o} g_1(x,Q^2) dx</math>
 +
 +
<math>g_1 = \frac{F_1}{1+\gamma^2} (A_1+\gamma A_2)</math>
  
 
<math>\sigma \propto |M_{if}|^2</math>
 
<math>\sigma \propto |M_{if}|^2</math>
Line 18: Line 26:
  
 
<math>A = \frac{\sigma_{\frac{1}{2}} - \sigma_{\frac{3}{2}}}{\sigma_{\frac{1}{2}} + \sigma_{\frac{3}{2}}} = \frac{\frac{1}{3} - 1}{\frac{1}{3} + 1} = -1/2</math>
 
<math>A = \frac{\sigma_{\frac{1}{2}} - \sigma_{\frac{3}{2}}}{\sigma_{\frac{1}{2}} + \sigma_{\frac{3}{2}}} = \frac{\frac{1}{3} - 1}{\frac{1}{3} + 1} = -1/2</math>
 +
 +
 +
[http://wiki.iac.isu.edu/index.php/Forest_Classes] [[ Forest_Classes]]

Latest revision as of 21:03, 11 January 2010

The recoupling of two subsystems ψ with angular momenta j1 and j2 to a new systemΨ with total angular momentum J is written as

ΨJM=m1,m2Cj1,j2,Jm1,m2,Mψj1m1ψj2m2 = expansion of the systems total angular momentum in terms of the uncoupled original basis states of each individual constituent


Cj1,j2,Jm1,m2,M : Clebsch-Gordon Coefficient

C1,12,321,12,32=1

C1,12,321,12,12=13

C1,12,320,12,12=23

C1,12,121,12,12=23

C1,12,120,12,12=13


Γ1=xo0g1(x,Q2)dx

g1=F11+γ2(A1+γA2)

σ|Mif|2

Mfi=<Ψf|Hint|Ψi>

A=σ12σ32σ12+σ32=13113+1=1/2


[1] Forest_Classes