Difference between revisions of "Electric QuadrupoleMoment Forest NuclPhys I"
(16 intermediate revisions by the same user not shown) | |||
Line 18: | Line 18: | ||
You expand the electric potential in terms of spherical harmonics. | You expand the electric potential in terms of spherical harmonics. | ||
− | <math>\Phi(\vec{r}) = \ | + | <math>\Phi(\vec{r}) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \frac{4\pi}{2l + 1} q_{lm} \frac{Y_{lm}(\theta ,\phi)}{r^{l+1}}</math> |
because | because | ||
Line 24: | Line 24: | ||
<math>\vec{E} = \int \rho (\vec{r^'}) \frac{(\vec{r} - \vec{r^'})}{|r - r^'|^3} d^3r^' = - \vec{\nabla} \int \frac{\rho (r^')}{|\vec{r} - \vec{r^'}|}</math> | <math>\vec{E} = \int \rho (\vec{r^'}) \frac{(\vec{r} - \vec{r^'})}{|r - r^'|^3} d^3r^' = - \vec{\nabla} \int \frac{\rho (r^')}{|\vec{r} - \vec{r^'}|}</math> | ||
− | \vec{E} = -\vec{\nabla} \Psi (r) | + | <math>\vec{E} = -\vec{\nabla} \Psi (r)</math> |
<math>\Psi (r) = \int \frac{\rho (r^')}{|\vec{r} - \vec{r^'}|}</math> | <math>\Psi (r) = \int \frac{\rho (r^')}{|\vec{r} - \vec{r^'}|}</math> | ||
Line 56: | Line 56: | ||
<math>q_{20} = \frac{1}{2} \sqrt{\frac{5}{4\pi}} [(3z^')^2 - (r^')^2] \rho (r^') d^3r^' = \frac{1}{2} \sqrt{\frac{5}{4\pi}} Q_{33}</math> quadrupole moment | <math>q_{20} = \frac{1}{2} \sqrt{\frac{5}{4\pi}} [(3z^')^2 - (r^')^2] \rho (r^') d^3r^' = \frac{1}{2} \sqrt{\frac{5}{4\pi}} Q_{33}</math> quadrupole moment | ||
+ | <math>Y_{20} = \frac{1}{4} \sqrt{\frac{5}{\pi}} (3 cos^2 \theta -1) = \frac{1}{4} \sqrt{\frac{5}{\pi}} \frac{3z^2 - r^2}{r^2}</math> | ||
+ | <math>Q = <\Phi_{jj} | 4 \sqrt{\frac{\pi}{5}} r^2 Y_{20}| \Phi_{jj} ></math> | ||
+ | let | ||
+ | <math>\Phi_{jj} = R(r)Y_{ll}</math> = general wave function (l=m for maximum projection) | ||
+ | then | ||
+ | |||
+ | <math>Q = <R(r)Y_{ll} | \sqrt{\frac{16 \pi}{5}} r^2 Y_{20} | R(r) Y_{ll}></math> | ||
+ | |||
+ | <math>= \int R^*(r){Y_{ll}}^* { \sqrt{\frac{16 \pi}{5}} r^2 Y_{20} } R(r) Y_{ll} r^2 dr d\Omega</math> | ||
+ | |||
+ | <math>= \sqrt{\frac{16 \pi}{5}} \int r^2 R^*(r) R(r) dr \int {Y_{ll}}^* Y_{20} Y_{ll} d\Omega</math> | ||
+ | |||
+ | <math><r^2> = \int r^2 R^*(r) R(r) dr</math> mean square radius. | ||
+ | |||
+ | <math>\int {Y_{ll}}^* Y_{20} Y_{ll} d\Omega = ?</math> | ||
+ | |||
+ | Clebsch Gordon notation: | ||
+ | |||
+ | <math>|LM l_{1} l_{2}> = \Sigma_{m_1} \Sigma_{m_2} C_{m_1 m_2} | l_1 l_2 m_1 m_2 ></math> | ||
+ | |||
+ | My notation + example | ||
+ | |||
+ | <math>{[Y^{l_2} Y^{l_1}]_M}^L = \Sigma_{m_1 m_2} {C_{m_1 m_2 M}}^{l_1 l_2 L} {Y_M}^L</math> | ||
+ | |||
+ | <math>{[Y^{l_2} Y^{l_1}]_0}^L = \ sqrt{\frac{(2l_1 + 1)(2l_2 +1)}{4\pi (2L + 1)}} \Sigma_{m_1 m_2} {C_{0 0 0}}^{l_1 l_2 L} {Y_0}^L</math> | ||
+ | |||
+ | You can also write in terms of <math>{Y_M}^L</math> states | ||
+ | |||
+ | ie | ||
+ | |||
+ | <math>{Y_{m_2}}^{l_2}{Y_{m_1}}^{l_1} = \Sigma_{LM} {C_{m_1 m_2 M}}^{l_1 l_2 L} {[Y^{l_2}Y^{l_1}]_M}^L</math> | ||
+ | |||
+ | <math>|{C_{m_1 m_2 M}}^{l_1 l_2 L} |^2</math> = probability of finding states<math> {Y_{m_2}}^{l_2}</math> and <math>{Y_{m_2}}^{l_2}</math> with combined total angular momentum L and "z" component M. | ||
+ | |||
+ | |||
+ | Note: <math>({Y_m}^l)^* = (-1)^m {Y_{-m}}^l</math> : result of taking complex conjugate. | ||
+ | |||
+ | <math><Y_l^l | Y_0^2 | Y_l^l> = \int (Y_l^l)^* Y_0^2 (Y_l^l) d\Omega</math> | ||
+ | |||
+ | <math>= \int (-1)^l (Y_{-l}^l) Y_0^2 (Y_l^l) d\Omega</math>, note that <math>(Y_0^2) = (Y_0^2)^*</math> | ||
+ | |||
+ | <math>= \int (-1)^l (Y_{-l}^l) (Y_l^l) (Y_0^2)^* d\Omega</math> | ||
+ | |||
+ | <math>=\int (-1)^l \sum_{LM} C_{-l l M}^{l l L} [Y^l Y^l]_M^L (Y_0^2)^* d\Omega</math> | ||
+ | |||
+ | <math>[Y^l Y^l]_M^L = \sqrt{\frac{(2l_1 + 1)(2l_2 +1)}{4\pi (2L + 1)}} C_{0 0 0}^{l l L} Y_M^L</math> | ||
+ | |||
+ | <math>= \int \sum_{LM} \frac{2l+1}{\sqrt{4\pi(2L+1)}} C_{-l l 0}^{l l L} (-1)^l C_{0 0 0}^{l l L} Y_M^L (Y_0^2)^* d\Omega</math> | ||
+ | |||
+ | M=0 and L=2: Orthogonality of <math>Y_m^l</math>'s | ||
+ | |||
+ | <math>= \frac{2l+1}{\sqrt{4\pi(2L+1)}} C_{0 0 0}^{l l 2} (-1)^l C_{-l l 0}^{l l 2}</math> | ||
+ | |||
+ | |||
+ | <math>Q = \sqrt{16 \pi}{5} <r^2> \int (Y_l^l)^* Y_0^2 Y_l^l d\Omega</math> | ||
+ | |||
+ | <math>= \sqrt{16 \pi}{5} <r^2> \frac{2l+1}{\sqrt{4\pi (5)}} C_{0 0 0}^{l l 2} (-1)^l C_{-l l 0}^{l l 2}</math> | ||
+ | |||
+ | |||
+ | <math>C_{l_1 l_2 L}^{m_1 m_2 M} = (-1)^{l_1 - m_1} (\frac{2L+1}{2l_2+1})^{1/2} C_{l_1 L l_2}^{m_1 -M -m_2}</math> | ||
+ | |||
+ | |||
+ | <math>C_{l l 2}^{0 0 0} = (-1)^l (\frac{5}{2l+1})^{1/2} C_{0 0 0}^{l 2 l}</math> | ||
+ | |||
+ | <math>= (-1)^l \sqrt{\frac{5}{2l+1}} {\frac{3(l)^2 - l(l+1)}{\sqrt(2l-1)(l)(l+1)(2l+3)}}</math> | ||
+ | |||
+ | <math>C_{l l 2}^{-l l 0} = (-1)^{l+l} (\frac{5}{2l+1})^{1/2} C_{-l 0 -l}^{l 2 l}</math> | ||
+ | |||
+ | <math>=(-1)^{2l} \sqrt{\frac{5}{2l+1}} {\frac{3(l)^2 - l(l+1)}{\sqrt(2l-1)(l)(l+1)(2l+3)}}</math> | ||
+ | |||
+ | So | ||
+ | |||
+ | <math>Q = \frac{2}{5}<r^2>(2l+1) ((-1)^l \sqrt{\frac{5}{2l+1}} \frac{[-l(l+1)]}{\sqrt{(2l-1)l(l+1)(2l+3)}}) \times \sqrt{\frac{5}{2l+1}} {\frac{3(l)^2 - l(l+1)}{\sqrt(2l-1)(l)(l+1)(2l+3)}} (-1)^l</math> | ||
+ | |||
+ | After simplifying we get the following for Q: | ||
+ | |||
+ | <math>Q = -2 <r^2> \frac{l}{(2l+3)}</math> | ||
+ | |||
+ | The Quadrupole moment of a single particle | ||
+ | |||
+ | <math><r^2> = \frac{3}{5}R^2 = \frac{3}{5} R_0^2 A^{2/3}</math> | ||
+ | |||
+ | <math>\vec{j} = \vec{l} + \vec{s}</math> -> <math>\vec{l}=\vec{j} - \vec{s} = \vec{j} \pm \frac{1}{2}</math> | ||
+ | |||
+ | <math>Q_{SingleParticle} = - 2<r^2> \times \frac{j - 1/2}{2(j + 1)}</math> when l=j-1/2 | ||
+ | |||
+ | <math>Q_{SingleParticle} = - 2<r^2> \times \frac{j + 1/2}{2(j + 1)}</math> when l=j+1/2 | ||
+ | |||
+ | If Q due to unpaired proton | ||
+ | |||
+ | then l=1 s=1/2 | ||
+ | |||
+ | <math>Q = -2 <r^2> \frac{l}{()2l+3} = -2 (\frac{3}{5}R_0^2 A^{2/3}) \frac{l}{2l+3}</math> | ||
+ | |||
+ | <math>R_0^2 = (1.23fm)^2</math> A=7 | ||
+ | |||
+ | <math>= -2 \frac{3}{5}(1.23fm)^2 7^{2/3} \frac{1}{5} = -1.33 fm^2</math> | ||
+ | |||
+ | <math>1 barn = 100 fm^2</math> | ||
+ | |||
+ | -> <math> Q = (-1.33fm^2)(\frac{1 barn}{100fm^2}) = -0.013 barn</math> | ||
+ | |||
+ | exp: -0.04 barns | ||
+ | |||
+ | ?????????????? | ||
+ | ????? | ||
+ | ????? | ||
+ | ????? | ||
+ | |||
+ | |||
+ | All of particles in a subshell could contribute to the quadrupole moment. | ||
+ | |||
+ | Max number in subshell = | ||
+ | |||
+ | <math>1\leq Number- of-Nucleons-in-Unfilled-Subshell \equiv N \leq 2j</math> | ||
+ | |||
+ | <math>Q_{tot} = Q_{SP} [1- \frac{2(N-1)}{2j-1}]</math> | ||
+ | |||
+ | B.) j=3/2 and N=3 | ||
+ | |||
+ | <math>Q_{tot} = +0.0136</math> barns | ||
[[Forest_NucPhys_I]] | [[Forest_NucPhys_I]] |
Latest revision as of 06:23, 7 April 2009
Electric Quadrupole Moment of a Nucleus
Pages 104-111
As in the dipole calculation we assume that the object is in a state such that its maximum total angular momentum is along the z-axis.
or
then
From definition of quadrupole moment for a single charged object/particle.
The origin of this comes from electron-statics.
You expand the electric potential in terms of spherical harmonics.
because
Since
if
if
if
if
potential ar
due to charge distribution atfor outside of charged sphere.
is fixed.
= multiple moments
quadrupole moment
let
= general wave function (l=m for maximum projection)
then
mean square radius.
Clebsch Gordon notation:
My notation + example
You can also write in terms of
statesie
= probability of finding states and with combined total angular momentum L and "z" component M.
Note: : result of taking complex conjugate.
, note that
M=0 and L=2: Orthogonality of
's
So
After simplifying we get the following for Q:
The Quadrupole moment of a single particle
->
when l=j-1/2
when l=j+1/2
If Q due to unpaired proton
then l=1 s=1/2
A=7
->
exp: -0.04 barns
?????????????? ????? ????? ?????
All of particles in a subshell could contribute to the quadrupole moment.
Max number in subshell =
B.) j=3/2 and N=3
barns