Difference between revisions of "TF DerivationOfCoulombForce"
(92 intermediate revisions by one other user not shown) | |||
Line 24: | Line 24: | ||
Substituting | Substituting | ||
− | <math>\frac{1}{(2 \pi)^{3/2} } \left \{ \ | + | <math>\frac{1}{(2 \pi)^{3/2} } \left \{ \oint_S e^{-i \vec{k} \cdot \vec{\xi}} \vec{\nabla} \phi \cdot d\vec{A} - \int \vec{\nabla} \cdot (\phi \vec{\nabla} e^{-i \vec{k} \cdot \vec{\xi}} ) dV + \int \phi {\nabla}^2 e^{-i \vec{k} \cdot \vec{\xi}} dV \right \} = \frac{-e}{(2 \pi)^{3/2} \epsilon_0}</math> |
Gauss' Low: | Gauss' Low: | ||
− | <math>\int \vec{\nabla}\cdot (\phi \vec{\nabla} e^{-i \vec{k} \cdot \vec{\xi}} ) dV = \int \phi \vec{\nabla} e^{-i k \xi } \cdot d\vec{A}</math> | + | <math>\int \vec{\nabla}\cdot (\phi \vec{\nabla} e^{-i \vec{k} \cdot \vec{\xi}} ) dV = \oint_S \phi \vec{\nabla} e^{-i k \xi } \cdot d\vec{A}</math> |
+ | |||
+ | |||
+ | <math>\frac{1}{(2 \pi)^{3/2} } \left \{\oint_S \left \{ e^{-i \vec{k} \cdot \vec{\xi}} \vec{\nabla} \phi - \phi \vec{\nabla} e^{-i \vec{k} \cdot \vec{\xi}} \right \} \cdot d\vec{A} + \int \phi {\nabla}^2 e^{-i \vec{k} \cdot \vec{\xi}} dV \right \} = \frac{-e}{(2 \pi)^{3/2} \epsilon_0}</math> | ||
+ | |||
+ | |||
+ | <math>\frac{1}{(2 \pi)^{3/2} } \int \phi (-ik) (-ik) e^{-i \vec{k} \cdot \vec{\xi}} dV = \frac{-e}{(2 \pi)^{3/2} \epsilon_0}</math> | ||
+ | |||
+ | |||
+ | <math>-k^2 \frac{1}{(2 \pi)^{3/2} } \int \phi(\xi) e^{-i \vec{k} \cdot \vec{\xi}} dV_{xi} = \frac{-e}{(2 \pi)^{3/2} \epsilon_0}</math> | ||
+ | |||
+ | <math>-k^2 \phi(k) = \frac{-e}{(2 \pi)^{3/2} \epsilon_0}</math> | ||
+ | |||
+ | 1.) Coulomb <math>\phi(k) = \frac{e}{(2 \pi)^{3/2} \epsilon_0} \frac{1}{k^2}</math> = potential in "k"(momentum) space | ||
+ | |||
+ | To find the potential in "coordinate" <math>(\xi)</math> space just inverse transform | ||
+ | |||
+ | :<math>\phi (\xi) = \frac{1}{(2 \pi)^{3/2} } \int e^{+ i \vec{k} \cdot \vec{\xi}} \phi (k) dV_k</math> | ||
+ | |||
+ | :::<math>= \frac{1}{(2 \pi)^{3/2} } \int e^{i \vec{k} \cdot \vec{\xi}} \frac{e}{2 \pi)^{3/2} \epsilon_0} \frac{1}{k^2} dV_k</math> | ||
+ | :::<math>= \frac{e}{(2 \pi)^{3} \epsilon_0} \int \frac{e^{i \vec{k} \cdot \vec{\xi}}}{k^2} dV_k</math> | ||
+ | |||
+ | |||
+ | :::::<math>dV_k=k^2 sin{\theta}_k d{\theta}_k d{\phi}_k dk</math> | ||
+ | |||
+ | |||
+ | :::<math>=\frac{e}{(2 \pi)^{3} \epsilon_0} {{\int}_0}^{2\pi} d{\phi}_k {{\int}_0}^{\pi} d{\theta}_k {{\int}_0}^{\infty} dk \times k^2 sin{\theta}_k e^{i \vec{k} \cdot \vec{\xi}}</math> | ||
+ | |||
+ | :::<math>=\frac{e}{(2\pi)^2 \epsilon_0} {{\int}_0}^{\pi} {{\int}_0}^{\infty} sin{\theta}_k e^{ik \xi cos{\theta}_k} k^2 dk</math> | ||
+ | |||
+ | <math>u=cos\theta</math> | ||
+ | |||
+ | <math>du=sin\theta d\theta</math> | ||
+ | |||
+ | |||
+ | :<math>\phi(\xi) = \frac{e}{4 {\pi}^2 \epsilon_0} {{\int}_0}^infty {{\int}_{-1}}^1 \frac{e^{ik\xi u}}{k^2} du k^2 dk</math> | ||
+ | |||
+ | :::<math>=\frac{e}{4 {\pi}^2 \epsilon_0} {{\int}_0}^infty \frac{e^{ik \xi} - e^{-ik\xi}}{ik\xi} dk</math> | ||
+ | |||
+ | :::<math>=\frac{e}{4 {\pi}^2 \epsilon_0} \frac{1}{i\xi} (i\pi) = \frac{e}{4 {\pi}^2 \epsilon_0} \frac{1}{\xi}</math> | ||
+ | |||
+ | :::<math>=\frac{e}{4 {\pi}^2 \epsilon_0} \frac{1}{|\vec{r} - \vec{r}^'|} =</math> Coulomb potential | ||
+ | |||
+ | ;2) Nuclear potential | ||
+ | |||
+ | Consider the force field generated by a point source (nucleon) at location <math>\vec{r}</math> from the origin of a coordinate system. | ||
+ | |||
+ | [[Image:Nuclear_Potential_CoordinateSystem.jpg|300px]] | ||
+ | |||
+ | Assume a particle of mass m is e charged to generate the field (In Coulomb force particle was m=o photon). | ||
+ | |||
+ | Definition of relativistic Energy: | ||
+ | |||
+ | <math>E^2=(mc^2)^2 + (cp)^2</math> | ||
+ | |||
+ | In terms of Hamiltonian | ||
+ | |||
+ | <math>-\hbar \frac{d^2}{dt^2} \phi(\vec{r}) = [ (mc^2)^2 + (\frac{c\hbar \vec{\nabla}}{i})^2 ] \phi (r)</math> | ||
+ | |||
+ | |||
+ | In a static case | ||
+ | |||
+ | <math>[(mc^2)^2 - c^2 {\hbar}^2 {\nabla}^2]\phi(r)=0</math> | ||
+ | |||
+ | <math>[ {\nabla}^2 - (\frac{mc}{\hbar})^2]\phi(r)=0</math> | ||
+ | |||
+ | Lets <math>\mu = \frac{mc}{\hbar} = \frac{(140 \frac{MeV}{c^2})c}{6.6 \times 10^{-16}eV \cdot s} (\frac{10^6 eV}{MeV})</math> | ||
+ | |||
+ | :::<math>=\frac{2.1 \times 10^23}{(3\times 10^8 m)} (\frac{10^{-15}m}{fm}) =\frac{0.7}{fm} (200 MeV fm) = 140 MeV</math> | ||
+ | |||
+ | |||
+ | :<math>\hbar c=(6.6 \times 10^{-16} eV \cdot s) (3 \times 10^8 \frac{m}{s}) (\frac{10^{15} fm}{m}) (\frac{1 MeV}{10^6 eV}) = 198 MeV \cdot fm \approx 200 MeV \cdot fm</math> | ||
+ | |||
+ | :<math>\mu = \frac{mc^2}{\hbar c} = \frac{mc^2}{200 MeV \cdot fm}</math> <math>\Longrightarrow</math> if <math>mc^2\approx 200 MeV</math> then interaction length <math>\sim 1 fm</math>. | ||
+ | |||
+ | |||
+ | With the source term | ||
+ | |||
+ | :::::<math>[{\nabla}^2 - {\mu}^2]\phi(\xi) = -{{\xi}_0}^' \delta(\xi)</math> | ||
+ | |||
+ | As seen before for Coulomb force | ||
+ | |||
+ | |||
+ | :<math>\frac{1}{(2\pi)^{3/2}} \int e^{-ik \xi} [{\nabla}^2 - {\mu}^2] \phi (\xi) dV = -\frac{{{\xi}_0}^'}{(2\pi)^{3/2}} \int e^{-i \vec{k} \cdot \vec{\xi}} \delta (\xi) dV</math> | ||
+ | |||
+ | ::<math>[-k^2 -{\mu}^2]\phi(\vec{k}) = -\frac{{{\xi}_0}^'}{(2\pi)^{3/2}}</math> | ||
+ | |||
+ | ::<math>\Longrightarrow \phi(\vec{k}) = \frac{{{\xi}_0}^'}{(2\pi)^{3/2}} \frac{1}{k^2 + {\mu}^2}</math> | ||
+ | |||
+ | :<math>\phi(\vec{\xi}) = \frac{1}{(2 \pi)^{3/2}} \int \frac{e^{+i \vec{k} \cdot \vec{\xi}}}{(2 \pi)^{3/2}} \frac{{{\xi}_0}^'}{k^2 + {\mu}^2} dV_k</math> : inverse fourier transform | ||
+ | |||
+ | ::<math>= \frac{{{\xi}_0}^'}{(2\pi)^3} \int \frac{e^{+i \vec{k} \cdot \vec{\xi}}}{k^2 + {\mu}^2} k^2 sin\theta d\theta d\phi dk</math> | ||
+ | |||
+ | :<math>\phi(\xi) = \frac{{{\xi}_0}^'}{(2\pi)^2} \int \frac{e^{i\vec{k} \cdot \vec{\xi}}}{(k^2 + {\mu}^2)} k^2 d[cos\theta] (2\pi) dk</math> | ||
+ | |||
+ | ::<math>= \frac{{{\xi}_0}^'}{(2\pi)^2} {{\int}_0}^{\infty} \frac{k^2}{k^2 + {\mu}^2} {{\int}_0}^{\pi} e^{ik\xi cos\theta} d[cos\theta] dk</math> | ||
+ | |||
+ | ::<math>= \frac{{{\xi}_0}^'}{(2\pi)^2} {{\int}_0}^{\infty} \frac{k^2}{k^2 + {\mu}^2} dk \frac{e^{ik\xi \mu}}{ik\xi} {|_{-1}}^1</math> | ||
+ | |||
+ | ::<math>= \frac{{{\xi}_0}^'}{(2\pi)^2} \frac{1}{i\xi} {{\int}_0}^{\infty} \frac{k}{k^2 + {\mu}^2} (e^{ik\xi} - e^{-ik\xi})</math> | ||
+ | |||
+ | ::<math>= \frac{{{\xi}_0}^'}{(2\pi)^2}\frac{1}{i\xi} {{\int}_{-\infty}}^{\infty} \frac{e^{ik\xi}kdk}{k^2 + {\mu}^2}</math> | ||
+ | |||
+ | ::::<math>{{\int}_{-\infty}}^{\infty} \frac{e^{ik\xi}kdk}{k + i{\mu}}{k - i{\mu}} = i\pi e^{-\mu \xi}</math> | ||
+ | |||
+ | :<math>\phi(\xi) = \frac{{{\xi}_0}^'}{(2\pi)^2} \frac{e^{-\mu \xi}}{\xi}</math> | ||
+ | |||
+ | <math>\Longrightarrow</math> | ||
+ | |||
+ | :<math>\phi(\vec{r}) = \frac{{{\xi}_0}^'}{(2\pi)^2} \frac{1}{|\vec{r} - {\vec{r}}^'|}</math> | ||
+ | |||
+ | :<math>{\phi}_{EM}(\vec{r}) = \frac{e}{4\pi \epsilon_0} \frac{1}{|\vec{r} - {\vec{r}}^'|}</math> | ||
+ | |||
+ | Coupling constants are: | ||
+ | |||
+ | ?????????????????????????????????? | ||
+ | ?????????????????????????????????? | ||
+ | |||
+ | |||
+ | ;Summary: | ||
+ | |||
+ | There are now at least two forces which act between Nucleons, the Coulomb force and the Nucleon force. We can write the force in terms of a potential | ||
+ | |||
+ | ::::<math>V_{EM} = \frac{e}{4\pi \epsilon_0} \frac{1}{|\vec{r} - {\vec{r}}^'|}</math> | ||
+ | |||
+ | |||
+ | ::::<math>V_{Nuc} = \frac{{{\xi}_0}^'}{(2\pi)^2} \frac{e^{-\mu |\vec{r} - {\vec{r}}^'|}}{|\vec{r} - {\vec{r}}^'|}</math> | ||
+ | |||
+ | ::<math>V_{tot} = \frac{1}{4\pi} \left \{ \frac{Q_1 Q_2}{\epsilon_0 e } - \frac{{\xi}_0}{\pi} e^{-\mu |\vec{r} - {\vec{r}}^'|} \right \} \frac{1}{|\vec{r} - {\vec{r}}^'|}</math> | ||
+ | |||
+ | ::::<math>\mu=\frac{m_{\pi}c}{\hbar}=\frac{1}{R} \sim (1.5 fm)^{-1}</math> | ||
+ | |||
+ | ;C.) Deuteron: <math>({H_1}^2)</math>, <math>(D^2)</math>, (d) = a proton-neutron bound state | ||
+ | |||
+ | General properties: L=0 - orbital angular momentum | ||
+ | :::::<math>J^{\pi} = 1^+</math> - (Nuclear spin) | ||
+ | |||
+ | <math>\sqrt{r^2}=2.095 fm</math> - Mean radius. | ||
+ | |||
+ | <math>B.E.=2.2246 MeV</math> - Binding energy. | ||
+ | |||
+ | ;Non-relativistic Schrodiger solution: | ||
+ | |||
+ | ::::<math>B.E. = 2.2246 MeV << 1.8 GeV m(H^2)c^2</math> | ||
+ | |||
+ | <math>\Longrightarrow</math> weakly bound system | ||
+ | |||
+ | Instead of Dirac equation try 3-D Square Well Schrod. Eq. approximation for Deuteron wavefunction. | ||
+ | |||
+ | [[Image:SquareWellPotential.jpg|350px]] | ||
+ | |||
+ | <math>V(r) = -V_0</math> when <math>r \leq R = 2.2</math> | ||
+ | |||
+ | <math>V(r) = 0</math> <math>r>R</math> | ||
+ | |||
+ | Assume <math>\psi = Y_{00} \frac{V(r)}{r}</math> : No angular dependence, only radial dependence. | ||
+ | |||
+ | ;Schrod. Equation: | ||
+ | |||
+ | <math>-\frac{\hbar^2}{2m} {\nabla}^2 \psi + V(r)\psi = E \psi</math> | ||
+ | |||
+ | <math>{\nabla}^2 = \frac{1}{r^2} \frac{\partial}{\partial r}(r^2 \frac{\partial}{\partial r}) + \frac{1}{r^2 sin\theta} \frac{\partial}{\partial \theta} (sin\theta \frac{\partial}{\partial \theta}) + \frac{1}{r^2 sin^2 \theta} \frac{{\partial}^2}{\partial {\phi}^2} | ||
+ | </math> | ||
+ | |||
+ | |||
+ | |||
+ | <math>-\frac{\hbar^2}{2m} Y_{00} \frac{1}{r^2} \frac{\partial}{\partial r} r^2 \frac{\partial (U(r)/r)}{\partial r} + \frac{1}{r^2 sin\theta}\frac{U(r)}{r}(\frac{\partial}{\partial \theta} sin \theta \frac{\partial Y_{00}}{\partial \theta})</math> | ||
+ | |||
+ | <math>+ \frac{U(r)}{r^3 sin^2 \theta} \frac{{\partial}^2}{\partial {\phi}^2} Y_{00} + \frac{V(r)Y_{00} U(r)}{r} = \frac{E U(r)}{r}</math> | ||
+ | |||
+ | |||
+ | <math>\frac{1}{r^2} \frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r} \frac{U(r)}{r} = \frac{1}{r^2} \frac{\partial}{\partial r} r^2 [\frac{1}{r}\frac{\partial U(r)}{r} - \frac{U(r)}{r^2}]</math> | ||
+ | |||
+ | <math>= \frac{1}{r^2} [\frac{\partial U(r)}{\partial r} + r \frac{\partial^2 U(r)}{\partial r^2} - \frac{2rU(r)}{r^2} - \frac{r^2}{r^2} \frac{\partial U(r)}{\partial r} - r^2 U(r)\frac{-2}{r^3}]</math> | ||
+ | |||
+ | <math>= \frac{1}{r}\frac{\partial^2 U(r)}{\partial r^2} + \frac{1}{r^2} \frac{\partial U(r)}{\partial r} - \frac{1}{r^2} \frac{\partial U(r)}{\partial r} - \frac{2U(r)}{r^2} + \frac{2U(r)}{r^2}</math> | ||
+ | |||
+ | <math>= \frac{1}{r}\frac{\partial^2 U(r)}{\partial r^2}</math> | ||
+ | |||
+ | |||
+ | <math>\frac{U(r)}{r^3 sin\theta}(\frac{\partial}{\partial \theta} sin\theta \frac{\partial}{\partial \theta})Y_{00} = \frac{U(r)}{r^3 sin\theta} l(l+1)Y_{00}</math> | ||
+ | |||
+ | :::<math>=\frac{U(r)}{r^3 sin\theta}[\frac{\partial}{\partial \theta} sin\theta \frac{\partial}{\partial \theta}]\frac{1}{\sqrt{4\pi}}=0</math> | ||
+ | |||
+ | |||
+ | <math>\frac{U(r)}{r^3 sin\theta} \frac{\partial^2}{\partial {\phi}^2} Y_{00} = 0</math> : <math>Y_{00} = \frac{1}{\sqrt{4\pi}}</math> | ||
+ | |||
+ | ;Schrod. Equation becomes: | ||
+ | |||
+ | <math>-\frac{\hbar^2}{2m} \frac{Y_{00}}{r} \frac{\partial^2 U(r)}{\partial r^2} + V(r) Y_{00}\frac{U(r)}{r} = E \frac{U(r)Y_{00}}{r}</math> | ||
+ | |||
+ | |||
+ | <math> | ||
+ | \Longrightarrow</math> for <math>r\leq R</math> : <math> V(r)= -V_0</math> | ||
+ | |||
+ | |||
+ | <math>\frac{\partial^2 U(r)}{\partial r^2} + \frac{2m}{\hbar^2}(E+V)U(r) = 0</math> | ||
+ | |||
+ | for <math>r>R</math> : <math>V(r)=0</math> | ||
+ | |||
+ | |||
+ | <math>\frac{\partial^2 U(r)}{\partial r^2} + \frac{2m}{\hbar^2} E U(r) = 0</math> | ||
+ | |||
+ | |||
+ | [[Image:imageTF_1.jpg]] | ||
+ | |||
+ | ;<math>\psi_{I}</math> : | ||
+ | <math> | ||
+ | \frac{\partial^2 U_I (r)}{\partial r^2} + {k_1}^2 U(r) = 0</math> : <math> {k_1}^2 = \frac{2m}{\hbar^2}(E + V)</math> | ||
+ | |||
+ | <math> | ||
+ | \Longrightarrow</math> <math>U_I (r) = A sin(k_1 r) + Bcos(k_1 r)</math> : spring simple harmonic motion | ||
+ | |||
+ | |||
+ | Boundary condition: | ||
+ | |||
+ | ::::<math>\psi_I (r=0)=0</math> <math>\Longrightarrow</math> <math>B=0</math> | ||
+ | |||
+ | ;<math>\psi_{II}</math> : | ||
+ | |||
+ | <math>\frac{\partial^2 U_{II} (r)}{\partial r^2} + {k_2}^2 U(r) = 0</math> : <math> {k_2}^2 = \frac{2m}{\hbar^2} E < 0</math> | ||
+ | |||
+ | E<0 for bound states. Taking out " - " sign in <math>{k_2}^2</math> | ||
+ | |||
+ | <math>\frac{\partial^2 U_{II} (r)}{\partial r^2} - {k_2}^2 U(r) = 0</math> | ||
+ | |||
+ | New definition of <math>{k_2}^2</math> : <math>{k_2}^2=\frac{2m}{\hbar^2}|E|</math> | ||
+ | |||
+ | <math>\Longrightarrow</math> <math>U_{II}(r) = C e^{-k_2 r} + D e^{k_2 r}</math> | ||
+ | |||
+ | |||
+ | Boundary condition:<math> U_{II} (r=\infty)</math> - finite <math>\Longrightarrow</math> D=0 | ||
+ | |||
+ | |||
+ | <math>U_I (r) = A sin(k_1 r)</math> | ||
+ | |||
+ | <math>U_{II} (r) = C e^{-k_2 r}</math> | ||
+ | |||
+ | ;Bounding condition: | ||
+ | |||
+ | <math>U_I (r=R) = U_{II} (r=R)</math> | ||
+ | |||
+ | <math>\frac{\partial U_I}{\partial r} {\mid}_{r=R} = \frac{\partial U_{II}}{\partial r} {\mid}_{r=R}</math> | ||
+ | |||
+ | <math>\Longrightarrow</math> <math>A sin(k_1 R) = C e^{-k_2 R}</math> | ||
+ | |||
+ | :::<math>A k_1 cos(k_1 R) = -C k_2 e^{-k_2 R}</math> | ||
+ | |||
+ | Dividing two equations <math>\Longrightarrow</math> | ||
+ | |||
+ | ::: <math>\frac{tan(k_1 R)}{k_1} = - \frac{1}{k_2}</math> | ||
+ | |||
+ | <math>\Longrightarrow</math> <math>tan(k_1 R) = - \frac{k_1}{k_2} = -\sqrt{\frac{\frac{2m}{\hbar^2}(V + E)}{\frac{2m}{\hbar^2}|E|}}</math> | ||
+ | |||
+ | But E<0 for bound states | ||
+ | |||
+ | <math>tan(k_1 R) = - \sqrt{\frac{(V - |E|)}{|E|}} = -X = -\frac{k_1}{k_2}</math> | ||
+ | |||
+ | |||
+ | <math>k_1 R = X k_2 R = X\beta</math> | ||
+ | |||
+ | <math>-X = tan (\beta X)</math> | ||
+ | |||
+ | Solving the ??? 59 eqution: | ||
+ | |||
+ | :::<math>X=-tan(\beta X)</math> | ||
+ | |||
+ | <math>\beta X = k_1 R</math> <math>\Longrightarrow</math> <math>\beta = \frac{k_1}{X}R = k_2 R = \sqrt{\frac{2m|E|}{\hbar^2}} R</math> | ||
+ | |||
+ | m = reduced mass | ||
+ | |||
+ | <math>\beta = \sqrt{\frac{2(\frac{938.98}{2} MeV) |E|}{(\hbar c)^2}} R</math> : | ||
+ | |||
+ | |||
+ | :<math>:=\sqrt{\frac{(938.98) MeV (2.224 MeV)}{ (197.3 \cdot MeV \cdot fm)^2}} R</math> | ||
+ | |||
+ | ::<math>=\sqrt{\frac{(938.98) \cdot (2.224) MeV^2}{(197.3)^2 MeV^2 \cdot fm^2}} (2.095 fm)</math> | ||
+ | |||
+ | ::<math>= 0.4853</math> | ||
+ | |||
+ | <math>|E| = |-2.224 MeV|</math> | ||
+ | |||
+ | Find X s.t. <math>X = -tan (0.4853 X)</math> | ||
+ | |||
+ | Using ?? 59 of graphing <math>\Longrightarrow</math> <math>X=3.91 = \frac{k_1}{k_2}</math> | ||
+ | |||
+ | <math>k_2 = \sqrt{\frac{2m |E|}{\hbar^2}} = \frac{\beta}{R} = \frac{0.9853}{2.095 \cdot fm} = \frac{1}{fm}</math> | ||
+ | |||
+ | <math>k_1 = X k_2 = (3.931) (\frac{0.231}{fm}) = \frac{0.91}{fm} = \sqrt{\frac{2m (V - |E|)}{\hbar^2}}</math> | ||
+ | |||
+ | <math>V_0 = 36 MeV</math> | ||
+ | |||
+ | ; Spin and Parity : <math>(I^{\pi})</math> | ||
+ | |||
+ | |||
+ | =66-78 pages= | ||
+ | |||
+ | The shrodinger equation for this scattering: | ||
+ | |||
+ | :::<math>-\frac{\hbar^2}{2m} \nabla^2 \psi + \nabla \psi = E \psi</math> | ||
+ | |||
+ | In spherical coordinates this may be written as: | ||
+ | |||
+ | ::::Let <math> \psi = \frac{U_l (r) Y_{lm}(\theta, \phi)}{r} | ||
+ | </math> | ||
+ | |||
+ | :::<math>-\frac{\hbar^2}{2m} \frac{\partial^2 U_l (r)}{\partial r^2} + \frac{l(l+1) \hbar}{2m} \frac{U_l (r)}{r^2} + V U_l(r) = E U_l (r)</math> | ||
+ | |||
+ | or | ||
+ | |||
+ | :::<math>-\frac{\hbar^2}{2m} \frac{\partial^2 U_l (r)}{\partial r^2} + ( V + \frac{l(l+1) \hbar^2}{2m} \frac{1}{r^2}) U_l (r) = E U_l(r)</math> | ||
+ | |||
+ | General solution: | ||
+ | |||
+ | :::<math>\frac{U_l(r)}{r} = A_l J_l (kr) + B_l N_l (kr)</math> | ||
+ | |||
+ | where | ||
+ | |||
+ | :::<math>J_l(kr)</math> = Bessel function | ||
+ | |||
+ | :::<math>N_l(kr)</math> = Neiman function | ||
+ | |||
+ | 1.) Distant scattering: r is large such that neutron "glances" off. | ||
+ | |||
+ | :::<math>J_l (kr) \approx \frac{sin(kr - l \pi /2)}{kr}</math> | ||
+ | |||
+ | :::<math>N_l (kr) \approx - \frac{cos (kr - l\pi /2)}{kr}</math> | ||
+ | |||
+ | :<math>\Longrightarrow</math> <math>\frac{U_l(r)}{r} = \frac{A_l sin(kr - \frac{l \pi}{2}) - B_l cos(kr - \frac{l \pi}{2})}{kr}</math> | ||
+ | |||
+ | |||
+ | :::<math>\frac{\psi_I (r)}{r} = A_{lI} \frac{sin(k_I r - \frac{l \pi}{2})}{k_I r}</math> | ||
+ | |||
+ | ::::<math>k_I = \sqrt{\frac{2m (V + E)}{\hbar^2}}</math> | ||
+ | |||
+ | :::<math>U_I (r=0)</math> = finite, no cosine term. | ||
+ | |||
+ | :::<math>\frac{U_{II}(r)}{r} = A_{l II} \frac{sin(k_{II}r - l \pi /2)}{k_{II}r} - B_{l II} \frac{cos(k_{II}r - l \pi /2)}{k_{II}r}</math> | ||
+ | |||
+ | ::::<math>k_{II} = \sqrt{\frac{2mE}{\hbar^2}}</math> | ||
+ | |||
+ | Normalizing and simplifying <math>U_{II}(r)</math> | ||
+ | |||
+ | :::<math>\frac{U_{II}(r)}{r} = \sqrt{{A_{l II }}^2 + {B_{l II}}^2} [ \frac{A_{l II}}{\sqrt{{A_{l\pi}}^2 + {B_{l II}}^2}} \frac{sin(k_{II}r - l \pi /2)}{k_{II}r} - \frac{B_{l II}}{\sqrt{{A_{l II}}^2 + {B_{l II}}^2}} \frac{cos(k_{II}r - l \pi /2)}{k_{II}r} ] </math> | ||
+ | |||
+ | |||
+ | ::::<math>cos (\delta_l) = \frac{A_{l II}}{\sqrt{{A_{l II}}^2 + {B_{l II}}^2}}</math> | ||
+ | |||
+ | :::<math>sin (\delta_l) = \frac{B_{l II}}{\sqrt{{A_{l II}}^2 + {B_{l II}}^2}}</math> | ||
+ | |||
+ | <math>\Longrightarrow</math> | ||
+ | |||
+ | :::<math>\frac{U_{II}(r)}{r} = \frac{\sqrt{{A_{l II}}^2 + {B_{l II}}^2}}{k_{II}r} \left \{ cos (\delta_l) sin(k_{II}r - l \pi /2) + sin ( \delta_l)cos(k_{II}r - l \pi /2) \right \} </math> | ||
+ | |||
+ | <math>+/- cosA sinB + sinA cosB = sin(A +/- B)</math> | ||
+ | |||
+ | :::<math>\frac{U_{II}(r)}{r} = \frac{\sqrt{{A_{l II}}^2 + {B_{l II}}^2}}{k_{II}r} sin (k_{II} r - l \pi /2 + \delta_l)</math> | ||
+ | |||
+ | ::::<math>=C_l \frac{sin(k_{II} r - l \pi /2 + \delta_l)}{k_{II}r}</math> | ||
+ | |||
+ | <math>A_{l II}</math> and <math>C_l</math> are found by applying Boundary conditions: | ||
+ | |||
+ | ::::: <math>\psi_I (r=R) = \psi_{II} (r=R)</math> | ||
+ | |||
+ | ::::: <math>\frac{\partial \psi_I}{\partial r} \mid_{r=R} = \frac{\partial \psi_{II}}{\partial r} \mid_{r=R}</math> | ||
+ | |||
+ | ;Example: l=0 special case | ||
+ | |||
+ | :::<math>\psi = \frac{U_l (r)}{r} Y_{lm}(\theta, \phi)</math> <math>\Longrightarrow</math> <math>\psi_{l=0} = \frac{U(r)}{r}</math> | ||
+ | |||
+ | :::<math>\frac{U_I (r)}{r} = A_I \frac{sin(k_I r - 0 \pi /2)}{k_I r}</math> <br> | ||
+ | :::: <math>{k_I}^2 = \frac{2m(V + E)}{\hbar^2}</math> | ||
+ | |||
+ | :::<math>\frac{U_{II} (r)}{r} = C \frac{sin(k_{II} r - 0 \pi /2 + \delta_0)}{k_{II} r}</math> <br> | ||
+ | :::: <math>k_{II}^2 = \frac{2m E}{\hbar^2}</math> | ||
+ | |||
+ | |||
+ | Apply Boundary Conditions: | ||
+ | |||
+ | :::<math>U_I (r=R) = U_{II} (r=R)</math> | ||
+ | |||
+ | :::<math>A_I sin(k_I R) = C sin(k_{II} R + \delta_0)</math> | ||
+ | |||
+ | :::<math>\frac{\partial \psi_I}{\partial r} \mid_{r=R} = \frac{\partial \psi_{II}}{\partial r} \mid_{r=R}</math> | ||
+ | |||
+ | :::<math>A_I k_I cos(k_I R) = C k_{II} cos(k_{II} R + \delta)</math> | ||
+ | |||
+ | <math>k_I</math>, <math>k_{II}</math> and R are known. <math>\delta</math> is unknown. | ||
+ | |||
+ | :::<math>\frac{U_I (R)}{ \frac{\partial U_I (r)}{\partial r} } = \frac{U_{II} (R)}{ \frac{\partial U_{II] (r)}{\partial r} }</math> | ||
+ | |||
+ | <math>\Longrightarrow</math> | ||
+ | |||
+ | :::<math>k_I cot(k_I R) = k_{II} cot (k_{II} R + \delta)</math> | ||
+ | |||
+ | :::::<math>k_{II}^2 = \frac{2m E}{\hbar^2}</math> | ||
+ | |||
+ | :::::<math>k_{II}^2 = \frac{2m E}{\hbar^2}</math> | ||
+ | |||
+ | If V=0 <math>\Longrightarrow</math> <math>k_I = k_{II}</math> <math>\Longrightarrow</math> <math>\delta = 0</math>: | ||
+ | Free neutron; No target; No phase shift. | ||
+ | |||
+ | image70_1 | ||
+ | |||
+ | |||
+ | If V>0 <math>\Longrightarrow</math> <math>k_I > k_{II}</math>: | ||
+ | |||
+ | image70 | ||
+ | |||
+ | If V<0 <math>\Longrightarrow</math> <math>k_I < k_{II}</math> <math>\Longrightarrow</math> <math>\delta < 0</math>: E>0; Neutron not bound. | ||
+ | |||
+ | If you measure the phase shift you can determine "sign" of V. | ||
+ | |||
+ | Cross-section:<math> \frac{d \sigma}{d \Omega} =</math> differential X-section = <math> \frac{#scattered/ solid-angle}{#in / Area} [m^2]</math> | ||
+ | |||
+ | :::=probability of scattering into the solid angle <math>( d\Omega )</math> | ||
+ | |||
+ | :::<math>\sigma = \int (\frac{d\sigma}{d\Omega}) d\Omega =</math> probability of scattering in any direction. | ||
+ | |||
+ | Let<math> j \equiv \frac{#particles}{area}</math> | ||
+ | |||
+ | <math>j_{scattered} = \frac{#Nucleons scattered}{area}</math> | ||
+ | |||
+ | From Q.M. <math>j = \frac{\hbar}{2mi}(\psi^* \frac{\partial \psi}{\partial X} - \psi \frac{\partial \psi^*}{\partial X}) =</math> particle current density | ||
+ | |||
+ | This comes from the continuity equation | ||
+ | |||
+ | |||
+ | :::<math>\frac{\partial \ro}{\partial t} + \vec{\nabla} \cdot \vec{J} = 0</math> | ||
+ | |||
+ | |||
+ | Time dependent Shrodinger equation \Longrightarrow | ||
+ | |||
+ | :::<math>\frac{\partial \psi}{\partial t} = -\frac{i}{\hbar} H \psi</math> | ||
+ | |||
+ | :::<math>\frac{\partial \psi^*}{\partial t} = \frac{i}{\hbar} H \psi^*</math> | ||
+ | |||
+ | <math>\frac{\partial}{\partial t}\psi^* \psi =</math> time derivative of the particle density | ||
+ | |||
+ | :::<math>\psi^* \frac{\partial \psi}{\partial t} + \psi \frac{\partial \psi^*}{\partial t}</math> | ||
+ | |||
+ | :::<math>\psi^* (-\frac{iH}{\hbar}\psi) + \psi (\frac{iH}{\hbar} \psi^*)</math> | ||
+ | |||
+ | :::<math>\frac{\partial \psi^* \psi}{\partial t} + \frac{i}{\hbar} [ \psi^* H \psi - \psi H \psi^*] = 0</math> | ||
+ | |||
+ | If free particle <math>H = \frac{p^2}{2m} = - \frac{\hbar^2}{2m} \frac{\partial^2}{\partial X^2}</math> | ||
+ | |||
+ | ;Cross-section | ||
+ | |||
+ | :::<math>\frac{\partial \psi^* \psi}{\partial t} + \frac{i}{\hbar} [ \psi^* (- \frac{\hbar^2}{2m}) \frac{\partial^2 \psi}{\partial X^2} - \psi (-\frac{\hbar^2}{2m})\frac{\partial^2 \psi}{\partial X^2} ] = 0</math> | ||
+ | |||
+ | :::<math>\frac{\partial \psi^* \psi}{\partial t} - \frac{i\hbar}{2m} [ \frac{\partial}{\partial X} (\psi^* \frac{\partial \psi}{\partial X} - \psi \frac{\partial \psi^*}{\partial X}) ] = 0</math> | ||
+ | |||
+ | Check: <math>\frac{\partial}{\partial X} (\psi^* \frac{\partial \psi}{\partial X} - \psi \frac{\partial \psi^*}{\partial X}) = \frac{\partial \psi^*}{\partial X} \frac{\partial \psi}{\partial X} + \psi^*\frac{\partial^2 \psi}{\partial X^2} - \frac{\partial \psi}{\partial X} \frac{\partial \psi^*}{\partial X} - \psi \frac{\partial^2 \psi^*}{\partial X^2}</math> | ||
+ | |||
+ | :::<math>\frac{\partial \psi^* \psi}{\partial t} + \frac{\hbar}{2m i} [ \frac{\partial}{\partial X} (\psi^* \frac{\partial \psi}{\partial X} - \psi \frac{\partial \psi^*}{\partial X}) ] = 0</math> | ||
+ | |||
+ | [[Forest_NucPhys_I#Electro_Magnetic_Interactions]] |
Latest revision as of 11:54, 24 September 2014
- Poisson's Equation
Fourier Transform of Poisson's Equation
Product rule for dervatives
Gauss' Theorem:
Definition of derivative:
Substituting
Gauss' Low:
1.) Coulomb
= potential in "k"(momentum) spaceTo find the potential in "coordinate"
space just inverse transform
- Coulomb potential
- 2) Nuclear potential
Consider the force field generated by a point source (nucleon) at location
from the origin of a coordinate system.Assume a particle of mass m is e charged to generate the field (In Coulomb force particle was m=o photon).
Definition of relativistic Energy:
In terms of Hamiltonian
In a static case
Lets
- if then interaction length .
With the source term
As seen before for Coulomb force
- : inverse fourier transform
Coupling constants are:
?????????????????????????????????? ??????????????????????????????????
- Summary
There are now at least two forces which act between Nucleons, the Coulomb force and the Nucleon force. We can write the force in terms of a potential
- C.) Deuteron
- , , (d) = a proton-neutron bound state
General properties: L=0 - orbital angular momentum
- - (Nuclear spin)
- Mean radius.
- Binding energy.
- Non-relativistic Schrodiger solution
weakly bound system
Instead of Dirac equation try 3-D Square Well Schrod. Eq. approximation for Deuteron wavefunction.
when
Assume
: No angular dependence, only radial dependence.- Schrod. Equation
:
- Schrod. Equation becomes
for :
for
:
:
: spring simple harmonic motion
Boundary condition:
:
E<0 for bound states. Taking out " - " sign in
New definition of
:
Boundary condition: - finite D=0
- Bounding condition
Dividing two equations
But E<0 for bound states
Solving the ??? 59 eqution:
m = reduced mass
:
Find X s.t.
Using ?? 59 of graphing
- Spin and Parity
66-78 pages
The shrodinger equation for this scattering:
In spherical coordinates this may be written as:
- Let
or
General solution:
where
- = Bessel function
- = Neiman function
1.) Distant scattering: r is large such that neutron "glances" off.
- = finite, no cosine term.
Normalizing and simplifying
and are found by applying Boundary conditions:
- Example
- l=0 special case
Apply Boundary Conditions:
, and R are known. is unknown.
If V=0
: Free neutron; No target; No phase shift.image70_1
If V>0 :
image70
If V<0
: E>0; Neutron not bound.If you measure the phase shift you can determine "sign" of V.
Cross-section:
differential X-section =- =probability of scattering into the solid angle
- probability of scattering in any direction.
Let
From Q.M.
particle current densityThis comes from the continuity equation
Time dependent Shrodinger equation \Longrightarrow
time derivative of the particle density
If free particle
- Cross-section
Check: