Difference between revisions of "Eγ vs probability with 8 cm of D20"

From New IAC Wiki
Jump to navigation Jump to search
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
[http://wiki.iac.isu.edu/index.php/PhotoFission_with_Polarized_Photons_from_HRRL Go Back]
 +
 +
 
<math>Probability = \sigma \times \rho \times thickness</math>
 
<math>Probability = \sigma \times \rho \times thickness</math>
  
<math>\rho of D _2 0 = 1 \frac{g}{cm^{3}} \times \frac {20}{18} \times \frac{6.022 \cdot 10^{23}}{20g}\times 2 = 6.6242 \cdot 10^{22}</math>
+
<math>\rho(D _20) = 1 \frac{g}{cm^{3}} \times \frac {20}{18} \times \frac{6.022 \cdot 10^{23}}{20g}\times 2 = 6.6242 \cdot 10^{22}</math>
  
  
Line 22: Line 25:
 
<math>14 MeV = 963 \cdot 10^{-30} \times 6.6242 \cdot 10^{22} \times 8 cm = 5.15 \cdot 10^{-4}</math>
 
<math>14 MeV = 963 \cdot 10^{-30} \times 6.6242 \cdot 10^{22} \times 8 cm = 5.15 \cdot 10^{-4}</math>
  
[[Image:Probability d20 8 cm.jpg]]
+
[[Image:probability_d20_8_cm_2.jpg]]
 +
 
 +
[http://wiki.iac.isu.edu/index.php/PhotoFission_with_Polarized_Photons_from_HRRL Go Back]

Latest revision as of 15:38, 8 June 2010

Go Back


[math]Probability = \sigma \times \rho \times thickness[/math]

[math]\rho(D _20) = 1 \frac{g}{cm^{3}} \times \frac {20}{18} \times \frac{6.022 \cdot 10^{23}}{20g}\times 2 = 6.6242 \cdot 10^{22}[/math]


[math]6 MeV = 2200 \cdot 10^{-30} \times 6.6242 \cdot 10^{22} \times 8 cm = 11.77 \cdot 10^{-4}[/math]


[math]8 MeV = 1776 \cdot 10^{-30} \times 6.6242 \cdot 10^{22} \times 8 cm = 9.51 \cdot 10^{-4}[/math]


[math]10 MeV = 1409 \cdot 10^{-30} \times 6.6242 \cdot 10^{22} \times 8 cm =7.54 \cdot 10^{-4}[/math]


[math]12 MeV = 1161 \cdot 10^{-30} \times 6.6242 \cdot 10^{22} \times 8 cm =6.22 \cdot 10^{-4}[/math]


[math]13 MeV = 1058 \cdot 10^{-30} \times 6.6242 \cdot 10^{22} \times 8 cm =5.66 \cdot 10^{-4}[/math]


[math]14 MeV = 963 \cdot 10^{-30} \times 6.6242 \cdot 10^{22} \times 8 cm = 5.15 \cdot 10^{-4}[/math]

Probability d20 8 cm 2.jpg

Go Back