Difference between revisions of "NucPhys I HomeworkProblems"

From New IAC Wiki
Jump to navigation Jump to search
 
(62 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
=Chapter 2=
 
=Chapter 2=
  
#Solve the Schrodinger equation for the following potential:
+
==Set 1==
 +
1.) In your own words, describe what the "Standard Model" of physics is using 2 to 5 paragraphs.  Your paragraphs should include the concepts of the 4 fundamental forces of physics, QED, and QCD at a minimum.  Any sentences in which a string of 5 or more words match a sentence that is  found on the internet will be evidence of cheating.
  
  
:<math>\[ \begin{array}{c} 1 \\ 2 \\ 3  \end{array}\]</math>
+
2.) Solve the Schrodinger equation for the following potential:
:<math>V(x) =\left \{  {0 \;\;\;\; x <0 \atop V_o \;\;\;\; x>0} \right .</math>
 
  
 +
:<math>V(x) = \infty \;\; x<0</math>
 +
:<math>V(x) =\left \{  {-V_0 \;\;\;\; 0<x <a \atop 0 \;\;\;\; x>a} \right .</math>
  
 +
<math>V_0 > 0</math>.  Assume particles are incident from <math>x = -\infty</math>, don't try to normalize but do express the wave function in terms of one coefficient.
  
V_0 > 0 and E>0. Assume particles are incident from <math>x = -\infty</math>, don't try to normalize but do express the wave function in terms of one coefficient.
+
== Set 2 ==
 +
1.) Given the following barrier potential
  
 +
:<math>V(x) = 0 \;\; x<0</math>
 +
:<math>V(x) =\left \{  {V_o \;\;\;\; 0<x <a \atop 0 \;\;\;\; x>a} \right .</math>
  
[http://www.iac.isu.edu/mediawiki/index.php/Forest_NucPhys_I Go Back]
+
show that the transmission coefficient is
 +
 
 +
: <math>T = \frac{1}{1+ \frac{V_o^2 \sinh^2(k_2a)}{4E(V_o-E)}}</math>
 +
 
 +
when <math>E < V_o</math>
 +
 
 +
Assume particles are incident from <math>x = -\infty</math> and <math>k_2^2 = 2m(V_o-E)/\hbar^2</math>.
 +
 
 +
==Set 3 ==
 +
1.)  Starting with Shrodinger's time-independent equation, derive the wave functions for a 2-D simple harmonic oscillator.  Your derivation should take advantage of separation of variables and you are not required to normalize the wave function.
 +
 
 +
== Set 4 ==
 +
 
 +
1.) Show that the mean-square charge radius of a uniformly charged sphere is <math><r^2> = 3R^2/5</math>
 +
 
 +
2.) Using the definition of the form factor <math>F(q)</math> and probably an integral table, calculate <math>F(q)</math> when
 +
 
 +
a.):<math>\rho(r) =\left \{  {\rho_0 \;\;\;\; r<R \atop 0 \;\;\;\; r>R} \right .</math>
 +
 
 +
 
 +
b.) <math>\rho(r) = \rho_0 e^{- \alpha r}</math>
 +
 
 +
c.) <math>\rho(r) = \rho_0 e^{- \alpha^2 r^2}</math>
 +
 
 +
== Set 5 ==
 +
1.)
 +
a.) find the binding energy difference between O-15 and N-15
 +
 
 +
b.) compute the nuclear radius of O-15 and N-15 assuming the above binding energy is due to the coulomb energy.
 +
 
 +
 
 +
2.) Muonic X-rays
 +
 
 +
a.) Calculate the energies of muonic K<math>_{\alpha}</math>-line X-rays from Fe assuming a point nucleus and using a one-electron model..
 +
 
 +
b.) Calculate the energy correction <math>(\Delta E)</math> due to the finite nuclear size.
 +
 
 +
3.) Find the binding energy using the fit equation B(Z,A) from the semi-empirical mass formula for
 +
 
 +
a.) Ne-21
 +
 
 +
b.) Fe-57
 +
 
 +
c.) Bi-209
 +
 
 +
d.) Fm-256
 +
 
 +
4.) Find the neutron separation energies for
 +
 
 +
a.) Li-7
 +
 
 +
b.) Zr-91
 +
 
 +
c.) U-236
 +
 
 +
5.) Find the proton separation energies for
 +
 
 +
a.) Ne-20
 +
 
 +
b.) Mn-55
 +
 
 +
c.) Au-197
 +
 
 +
== Set 6 ==
 +
 
 +
1.)    Assume a neutron may be described as a proton with a negative pion <math>(\pi^-)</math> in an <math>\ell =1</math> orbital state.
 +
 
 +
What would be the orbital magnetic dipole moment of this system <math>(s_{\pi} = 0)</math>?
 +
 
 +
2.) Assume that the proton magnetic moment is due to the rotational motion of a positive spherical uniform charge distribution of radius<math> R</math> spinning about its axis with angular speed <math>\omega</math>.
 +
 
 +
a.) Integrate the charge distribution to show that :
 +
 
 +
: <math>\mu = \frac{1}{5} e \omega R^2</math>
 +
 
 +
(hint: <math>\mu = i A</math>)
 +
 
 +
b.) show that
 +
 
 +
:<math>\mu = \frac{e s}{2 m}</math>
 +
 
 +
using the classical relationship between angular momentum and rotational speed for the spin.
 +
 
 +
== Set 7 ==
 +
 
 +
 
 +
1.) Solving the transcendental equation for the deuteron
 +
 
 +
a.) Assume the 3-D square well approximates the deuteron system such that the well width is 2.2 fm.  Using boundary conditions show that
 +
 
 +
:<math>\frac{k_1}{k_2} = -\tan(k_1R)</math>
 +
 
 +
where
 +
:<math>k_1^2 = \frac{2 m}{\hbar^2} (V+E)</math>
 +
and
 +
:<math>k_2^2 = -\frac{2 m}{\hbar^2}E</math>
 +
:<math>E = -2.224 MeV < 0</math> : bound state
 +
 
 +
b.) Rewrite the transcendental equation for the deuteron in the form
 +
 
 +
:<math>x=-tan(bx)</math>
 +
 
 +
and show that
 +
:<math>b \approx 0.46</math>
 +
 
 +
when R = 2 fm.
 +
 
 +
 
 +
;Use the reduced mass for the deuteron system.
 +
 
 +
c.) Solve the transcendental equation for <math>x</math>  using an iterative technique.
 +
 
 +
; I got x = 3.93xxxxxx
 +
 
 +
== Set 500 ==
 +
 
 +
 
 +
5.) Several nuclei decay by the emmission of an alpha particle.  An alpha particle (He-4) is a tighlty bound nuclear containing 2 protons and 2 neutrons in which the energy needed to remove one neutron is 20.5 MeV.  One model for this decay process views the alpha particle as being bound to the nucleus via a spherical potential well. 
 +
 
 +
:<math>V_{bound} =\left \{  {-V_o \;\;\;\; r <r_o \atop \frac{A}{r} \;\;\;\; r>r_o} \right .</math>
 +
 
 +
Once outside the nucleus, the alpha particle is repelled via Coulombs law
 +
 
 +
: <math>V_{outside} \approx \frac{2(Z-2)e^2}{r} \equiv \frac{A}{r}</math>
 +
 
 +
The original nucleus had a charge <math>Ze</math> and the alpha particle has a charge <math>2e</math>.
 +
 
 +
Use the WKB approximation to show that the transmissivity (T : transmission coefficient) is:
 +
 
 +
:<math>T = e^{-\frac{2}{\hbar} \int_{r_o}^{r_1} \sqrt{2m \left ( \frac{A}{r} - E\right )}dr} = e^{-\frac{2A}{\hbar v} (2W-\sin(2W) )}</math> Gamow's formula [[Media:GamowFormula.pdf]]
 +
 
 +
where
 +
:<math>(v=\sqrt{2E/m})</math> and  <math>\sqrt{r_o/r}\equiv cos W</math> and <math>r_1 = \frac{A}{E}</math>.
 +
 
 +
 
 +
[http://wiki.iac.isu.edu/index.php/Forest_NucPhys_I Go Back][[ Forest_NucPhys_I]]

Latest revision as of 17:48, 18 March 2009

Chapter 2

Set 1

1.) In your own words, describe what the "Standard Model" of physics is using 2 to 5 paragraphs. Your paragraphs should include the concepts of the 4 fundamental forces of physics, QED, and QCD at a minimum. Any sentences in which a string of 5 or more words match a sentence that is found on the internet will be evidence of cheating.


2.) Solve the Schrodinger equation for the following potential:

[math]V(x) = \infty \;\; x\lt 0[/math]
[math]V(x) =\left \{ {-V_0 \;\;\;\; 0\lt x \lt a \atop 0 \;\;\;\; x\gt a} \right .[/math]

[math]V_0 \gt 0[/math]. Assume particles are incident from [math]x = -\infty[/math], don't try to normalize but do express the wave function in terms of one coefficient.

Set 2

1.) Given the following barrier potential

[math]V(x) = 0 \;\; x\lt 0[/math]
[math]V(x) =\left \{ {V_o \;\;\;\; 0\lt x \lt a \atop 0 \;\;\;\; x\gt a} \right .[/math]

show that the transmission coefficient is

[math]T = \frac{1}{1+ \frac{V_o^2 \sinh^2(k_2a)}{4E(V_o-E)}}[/math]

when [math]E \lt V_o[/math]

Assume particles are incident from [math]x = -\infty[/math] and [math]k_2^2 = 2m(V_o-E)/\hbar^2[/math].

Set 3

1.) Starting with Shrodinger's time-independent equation, derive the wave functions for a 2-D simple harmonic oscillator. Your derivation should take advantage of separation of variables and you are not required to normalize the wave function.

Set 4

1.) Show that the mean-square charge radius of a uniformly charged sphere is [math]\lt r^2\gt = 3R^2/5[/math]

2.) Using the definition of the form factor [math]F(q)[/math] and probably an integral table, calculate [math]F(q)[/math] when

a.):[math]\rho(r) =\left \{ {\rho_0 \;\;\;\; r\lt R \atop 0 \;\;\;\; r\gt R} \right .[/math]


b.) [math]\rho(r) = \rho_0 e^{- \alpha r}[/math]

c.) [math]\rho(r) = \rho_0 e^{- \alpha^2 r^2}[/math]

Set 5

1.) a.) find the binding energy difference between O-15 and N-15

b.) compute the nuclear radius of O-15 and N-15 assuming the above binding energy is due to the coulomb energy.


2.) Muonic X-rays

a.) Calculate the energies of muonic K[math]_{\alpha}[/math]-line X-rays from Fe assuming a point nucleus and using a one-electron model..

b.) Calculate the energy correction [math](\Delta E)[/math] due to the finite nuclear size.

3.) Find the binding energy using the fit equation B(Z,A) from the semi-empirical mass formula for

a.) Ne-21

b.) Fe-57

c.) Bi-209

d.) Fm-256

4.) Find the neutron separation energies for

a.) Li-7

b.) Zr-91

c.) U-236

5.) Find the proton separation energies for

a.) Ne-20

b.) Mn-55

c.) Au-197

Set 6

1.) Assume a neutron may be described as a proton with a negative pion [math](\pi^-)[/math] in an [math]\ell =1[/math] orbital state.

What would be the orbital magnetic dipole moment of this system [math](s_{\pi} = 0)[/math]?

2.) Assume that the proton magnetic moment is due to the rotational motion of a positive spherical uniform charge distribution of radius[math] R[/math] spinning about its axis with angular speed [math]\omega[/math].

a.) Integrate the charge distribution to show that :

[math]\mu = \frac{1}{5} e \omega R^2[/math]

(hint: [math]\mu = i A[/math])

b.) show that

[math]\mu = \frac{e s}{2 m}[/math]

using the classical relationship between angular momentum and rotational speed for the spin.

Set 7

1.) Solving the transcendental equation for the deuteron

a.) Assume the 3-D square well approximates the deuteron system such that the well width is 2.2 fm. Using boundary conditions show that

[math]\frac{k_1}{k_2} = -\tan(k_1R)[/math]

where

[math]k_1^2 = \frac{2 m}{\hbar^2} (V+E)[/math]

and

[math]k_2^2 = -\frac{2 m}{\hbar^2}E[/math]
[math]E = -2.224 MeV \lt 0[/math] : bound state

b.) Rewrite the transcendental equation for the deuteron in the form

[math]x=-tan(bx)[/math]

and show that

[math]b \approx 0.46[/math]

when R = 2 fm.


Use the reduced mass for the deuteron system.

c.) Solve the transcendental equation for [math]x[/math] using an iterative technique.

I got x = 3.93xxxxxx

Set 500

5.) Several nuclei decay by the emmission of an alpha particle. An alpha particle (He-4) is a tighlty bound nuclear containing 2 protons and 2 neutrons in which the energy needed to remove one neutron is 20.5 MeV. One model for this decay process views the alpha particle as being bound to the nucleus via a spherical potential well.

[math]V_{bound} =\left \{ {-V_o \;\;\;\; r \lt r_o \atop \frac{A}{r} \;\;\;\; r\gt r_o} \right .[/math]

Once outside the nucleus, the alpha particle is repelled via Coulombs law

[math]V_{outside} \approx \frac{2(Z-2)e^2}{r} \equiv \frac{A}{r}[/math]

The original nucleus had a charge [math]Ze[/math] and the alpha particle has a charge [math]2e[/math].

Use the WKB approximation to show that the transmissivity (T : transmission coefficient) is:

[math]T = e^{-\frac{2}{\hbar} \int_{r_o}^{r_1} \sqrt{2m \left ( \frac{A}{r} - E\right )}dr} = e^{-\frac{2A}{\hbar v} (2W-\sin(2W) )}[/math] Gamow's formula Media:GamowFormula.pdf

where

[math](v=\sqrt{2E/m})[/math] and [math]\sqrt{r_o/r}\equiv cos W[/math] and [math]r_1 = \frac{A}{E}[/math].


Go BackForest_NucPhys_I