Difference between revisions of "Weighted Occupancy"

From New IAC Wiki
Jump to navigation Jump to search
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
 +
<center><math> \underline{\textbf{Navigation} }</math>
 +
 +
[[Uniform_distribution_in_Energy_and_Theta_LUND_files|<math>\vartriangleleft </math>]]
 +
[[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]]
 +
[[Relativistic_Units|<math>\vartriangleright </math>]]
 +
 +
</center>
 +
 
<pre>Total XSect=0.013866</pre>
 
<pre>Total XSect=0.013866</pre>
 
=97234 incident electrons=
 
=97234 incident electrons=
Line 7: Line 16:
  
  
<center><math>t_{sim}(75nA)=\frac{N_{in}}{\frac{50E-9\ A}{}\frac{1\ C}{1\ A}\frac{}{1\ s}\frac{1\ e^{-}}{1.602E-19\ C}}=\frac{97234\ e^{-}}{468,164,794,007\ e^{-}/s}=2.07E-7\ s</math></center>
+
<center><math>t_{sim}(75nA)=\frac{N_{in}}{\frac{75E-9\ A}{}\frac{1\ C}{1\ A}\frac{}{1\ s}\frac{1\ e^{-}}{1.602E-19\ C}}=\frac{97234\ e^{-}}{468,164,794,007\ e^{-}/s}=2.07E-7\ s</math></center>
  
  
<center><math>t_{sim}(100nA)=\frac{N_{in}}{\frac{50E-9\ A}{}\frac{1\ C}{1\ A}\frac{}{1\ s}\frac{1\ e^{-}}{1.602E-19\ C}}=\frac{97234\ e^{-}}{624,219,725,343\ e^{-}/s}=1.56E-7\ s</math></center>
+
<center><math>t_{sim}(100nA)=\frac{N_{in}}{\frac{100E-9\ A}{}\frac{1\ C}{1\ A}\frac{}{1\ s}\frac{1\ e^{-}}{1.602E-19\ C}}=\frac{97234\ e^{-}}{624,219,725,343\ e^{-}/s}=1.56E-7\ s</math></center>
  
  
Line 44: Line 53:
  
 
<center>Occupancy(100nA)=<math>\frac{3698.7}{270}\frac{1.56E-7}{250E-9}\frac{1}{112}\frac{100}{12}=0.637\%</math></center>
 
<center>Occupancy(100nA)=<math>\frac{3698.7}{270}\frac{1.56E-7}{250E-9}\frac{1}{112}\frac{100}{12}=0.637\%</math></center>
 +
 +
The non-time terms can be considered to be constant since they are either simple number such as 12 or functions which depend on the same variables such as the number of hits and number of events (Both terms are found by <math>\sigma N_{in}\rho l</math>,thus are only multiples of each other).  We can simplify this expression by:
 +
 +
 +
<center>Occupancy=<math>1.01926\%\frac{t_{sim}}{250E-9}</math></center>
  
  
Line 51: Line 65:
  
  
<center><math>t_{sim}(75nA)=\frac{N_{in}}{\frac{50E-9\ A}{}\frac{1\ C}{1\ A}\frac{}{1\ s}\frac{1\ e^{-}}{1.602E-19\ C}}=\frac{N_{in}}{468,164,794,007\ e^{-}/s}=250E-9\ s\rightarrow N_{in}=117041.2\ e^{-}</math></center>
+
<center><math>t_{sim}(75nA)=\frac{N_{in}}{\frac{75E-9\ A}{}\frac{1\ C}{1\ A}\frac{}{1\ s}\frac{1\ e^{-}}{1.602E-19\ C}}=\frac{N_{in}}{468,164,794,007\ e^{-}/s}=250E-9\ s\rightarrow N_{in}=117041.2\ e^{-}</math></center>
 +
 
 +
 
 +
<center><math>t_{sim}(100nA)=\frac{N_{in}}{\frac{100E-9\ A}{}\frac{1\ C}{1\ A}\frac{}{1\ s}\frac{1\ e^{-}}{1.602E-19\ C}}=\frac{N_{in}}{624,219,725,343\ e^{-}/s}=250E-9\ s\rightarrow N_{in}=156054.9\ e^{-}</math></center>
 +
 
 +
 
 +
CEBAF has a bunch redition rate of 499MHz for hall B.  For a current of 50nA, this implies:
 +
 
 +
<center><math>\frac{\frac{50E-9\ A}{}\frac{1C}{1A}\frac{}{1s}\frac{1\ e^{-}}{1.602E-19\ C}}{499E6\ Hz}=\frac{\frac{312,109,863,672\ e^{-}}{s}}{499E6\ Hz}=625\ e^{-}</math></center>
 +
 
 +
 
 +
If we declare that every 2ns consists of a bunch of 625 electrons each, then
 +
 
 +
<center><math>\frac{78027.5\ e^{-}}{\left(\frac{625\ e^{-}}{2E-9\ s}\right)}=124.844\times 2E-9\ s=2.50E-7\ s</math></center>
 +
 
 +
 
 +
<center><math>\frac{117041.2\ e^{-}}{\left(\frac{625\ e^{-}}{2E-9\ s}\right)}=187.266\times 2E-9\ s=3.75E-7\ s</math></center>
 +
 
 +
 
 +
<center><math>\frac{156054.9\ e^{-}}{\left(\frac{625\ e^{-}}{2E-9\ s}\right)}=249.688\times 2E-9\ s=4.99E-7\ s</math></center>
 +
 
 +
 
 +
If we use these times as the times of simulation:
 +
 
  
 +
<center>Occupancy(50nA)=<math>1.01926\%\frac{2.50E-7\ s}{250E-9}=1\%</math></center>
  
<center><math>t_{sim}(100nA)=\frac{N_{in}}{\frac{50E-9\ A}{}\frac{1\ C}{1\ A}\frac{}{1\ s}\frac{1\ e^{-}}{1.602E-19\ C}}=\frac{N_{in}}{624,219,725,343\ e^{-}/s}=250E-9\ s\rightarrow N_{in}=156054.9\ e^{-}</math></center>
 
  
 +
<center>Occupancy(75nA)=<math>1.01926\%\frac{3.75E-7\ s}{250E-9}=1.5\%</math></center>
 +
 +
 +
<center>Occupancy(100nA)=<math>1.01926\%\frac{4.99E-7\ s}{250E-9}=2\%</math></center>
  
 
==Method 2==
 
==Method 2==
Line 79: Line 120:
  
  
<center>Occupancy(50nA)=<math>\frac{3698.7}{270}\frac{3.11E-7}{250E-9}\frac{1}{112}\frac{100}{12}=0.82\%</math></center>
+
<center>Occupancy(50nA)=<math>\frac{3698.7}{270}\frac{250E-9}{3.11E-7}\frac{1}{112}\frac{100}{12}=0.82\%</math></center>
 +
 
 +
 
 +
 
 +
<center>Occupancy(75nA)=<math>\frac{3698.7}{270}\frac{250E-9}{2.07E-7}\frac{1}{112}\frac{100}{12}=1.23\%</math></center>
 +
 
 +
 
 +
 
 +
<center>Occupancy(100nA)=<math>\frac{3698.7}{270}\frac{250E-9}{1.56E-7}\frac{1}{112}\frac{100}{12}=1.63\%</math></center>
  
  
 +
----
  
<center>Occupancy(75nA)=<math>\frac{3698.7}{270}\frac{2.07E-7}{250E-9}\frac{1}{112}\frac{100}{12}=1.23\%</math></center>
 
  
 +
<center><math> \underline{\textbf{Navigation} }</math>
  
 +
[[Uniform_distribution_in_Energy_and_Theta_LUND_files|<math>\vartriangleleft </math>]]
 +
[[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]]
 +
[[Relativistic_Units|<math>\vartriangleright </math>]]
  
<center>Occupancy(100nA)=<math>\frac{3698.7}{270}\frac{1.56E-7}{250E-9}\frac{1}{112}\frac{100}{12}=1.63\%</math></center>
+
</center>

Latest revision as of 19:59, 29 December 2018

Navigation_

Total XSect=0.013866

97234 incident electrons

Nin97234stats.png


tsim(50nA)=Nin50E9 A1 C1 A1 s1 e1.602E19 C=97234 e312,109,862,672 e/s=3.11E7 s


tsim(75nA)=Nin75E9 A1 C1 A1 s1 e1.602E19 C=97234 e468,164,794,007 e/s=2.07E7 s


tsim(100nA)=Nin100E9 A1 C1 A1 s1 e1.602E19 C=97234 e624,219,725,343 e/s=1.56E7 s


Method 1

CLAS12 OccupancyNhitsNevttsimΔt111210012


Using the unweighted amounts


Occupancy(50nA)=1274783929673.11E7250E9111210012=1.27%


Occupancy(75nA)=1274783929672.07E7250E9111210012=0.844%


Occupancy(100nA)=1274783929671.56E7250E9111210012=0.637%


Using the weighted amounts


Occupancy(50nA)=3698.72703.11E7250E9111210012=1.27%


Occupancy(75nA)=3698.72702.07E7250E9111210012=0.844%


Occupancy(100nA)=3698.72701.56E7250E9111210012=0.637%

The non-time terms can be considered to be constant since they are either simple number such as 12 or functions which depend on the same variables such as the number of hits and number of events (Both terms are found by σNinρl,thus are only multiples of each other). We can simplify this expression by:


Occupancy=1.01926%tsim250E9


If 250ns is the time limit, then solving the time of simulation backwards will give the number of incident electrons within that window.

tsim(50nA)=Nin50E9 A1 C1 A1 s1 e1.602E19 C=Nin312,109,862,672 e/s=250E9 sNin=78027.5 e


tsim(75nA)=Nin75E9 A1 C1 A1 s1 e1.602E19 C=Nin468,164,794,007 e/s=250E9 sNin=117041.2 e


tsim(100nA)=Nin100E9 A1 C1 A1 s1 e1.602E19 C=Nin624,219,725,343 e/s=250E9 sNin=156054.9 e


CEBAF has a bunch redition rate of 499MHz for hall B. For a current of 50nA, this implies:

50E9 A1C1A1s1 e1.602E19 C499E6 Hz=312,109,863,672 es499E6 Hz=625 e


If we declare that every 2ns consists of a bunch of 625 electrons each, then

78027.5 e(625 e2E9 s)=124.844×2E9 s=2.50E7 s


117041.2 e(625 e2E9 s)=187.266×2E9 s=3.75E7 s


156054.9 e(625 e2E9 s)=249.688×2E9 s=4.99E7 s


If we use these times as the times of simulation:


Occupancy(50nA)=1.01926%2.50E7 s250E9=1%


Occupancy(75nA)=1.01926%3.75E7 s250E9=1.5%


Occupancy(100nA)=1.01926%4.99E7 s250E9=2%

Method 2

CLAS12 OccupancyNhitsNevtΔttsim111210012


Using the unweighted amounts


Occupancy(50nA)=127478392967250E93.11E7111210012=0.82%


Occupancy(75nA)=127478392967250E92.07E7111210012=1.23%


Occupancy(100nA)=127478392967250E91.56E7111210012=1.63%


Using the weighted amounts


Occupancy(50nA)=3698.7270250E93.11E7111210012=0.82%


Occupancy(75nA)=3698.7270250E92.07E7111210012=1.23%


Occupancy(100nA)=3698.7270250E91.56E7111210012=1.63%




Navigation_