Difference between revisions of "Extracting DeltaDoverD from PionAsym"

From New IAC Wiki
Jump to navigation Jump to search
 
(8 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
[[Delta_D_over_D]]
 +
 
;Extraction of <math>\frac{\Delta d_v}{d_v}</math> from charged pion asymmetries
 
;Extraction of <math>\frac{\Delta d_v}{d_v}</math> from charged pion asymmetries
  
Line 185: Line 187:
  
 
Towards semi-inclusive deep inelastic scattering at next-to-next-to-leading order, Daniele Anderle  https://arxiv.org/pdf/1612.01293.pdf
 
Towards semi-inclusive deep inelastic scattering at next-to-next-to-leading order, Daniele Anderle  https://arxiv.org/pdf/1612.01293.pdf
 +
 +
 +
D. de Florian, R. Sassot, M. Epele, R. J. Herna ́ndez-Pinto, M. Stratmann. Phys. Rev. D 91 014035 (2015).
 +
 +
Global extraction of the parton-to-pion fragmentation functions at NLO accuracy in QCD R. J. Herna ́ndez-Pinto  2016 https://arxiv.org/pdf/1609.02455.pdf
 +
 +
2014Next-to-Leading Order QCD Factorization for Semi-Inclusive Deep Inelastic Scattering at Twist 4, Zhong-Bo Kang, Enke Wang, Xin-Nian Wang, and Hongxi Xing
 +
Phys. Rev. Lett. 112, 102001 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.102001
  
 
=References=
 
=References=
 +
 +
2009 talk by Xiodong Jiang, kinematic cuts identified (Q2 >1GeV2,W >2GeV,W' (missing mass of undetected hadrons) >1.5GeV,xF >0,pπ >2GeV/c) , http://www.int.washington.edu/talks/WorkShops/int_09_3/People/Jiang_X/Jiang.pdf
 +
  
 
==Bibliography==
 
==Bibliography==
  
<references/>
+
</references>
  
 
==Documents==
 
==Documents==
Line 205: Line 218:
  
 
[[File:Asauryan_nucle-ex1103.1649.pdf]]
 
[[File:Asauryan_nucle-ex1103.1649.pdf]]
 +
 +
[[Delta_D_over_D]]

Latest revision as of 15:35, 22 September 2018

Delta_D_over_D

Extraction of Δdvdv from charged pion asymmetries

Leading Order (LO) extraction

Cross-section

A leading order expression for charged pion semi-inclusive pion electro-production cross section, represented as a sum of the π+ and π cross sections, using proton or neutron targets can be written, using Eq. 9 & 10 from Ref.<ref name="Christova9907265"> Christova, E., & Leader, E. (1999). Semi-inclusive production-tests for independent fragmentation and for polarized quark densities. hep-ph/9907265.</ref>, as:

σπ++πp=19[4(u+ˉu)+(d+ˉd)]Dπ++πu+2sDπ++πu


σπ++πn=19[4(d+ˉd)+(u+ˉu)]Dπ++πu+2sDπ++πu



Independent fragmentation identifies the process in which quarks fragment into hadrons, independent of the photon-quark scattering process. In other words, the fragmentation process is independent of the initial quark environment, which initiates the hadronization process. Assuming independent fragmentation and using isospin (Dπ+u=Dπ¯u and Dπd=Dπ+¯d ) and charge (Dπ+u=Dπd) conjugation invariance for the fragmentation functions, the following equality holds:

Dπ+±πu=Dπ+u±Dπu=Dπ+±πd


Strange quark contributions to the above SIDIS cross-section become ignorable due to the dominant contributions from the up and down quarks as x_{Bj} increases beyond 0.3

σπ++πp=19[4(u+ˉu)+(d+ˉd)]Dπ++πu


σπ++πn=19[4(d+ˉd)+(u+ˉu)]Dπ++πu


Helicity Difference Cross Section

The polarized cross section difference is defined as :

Δσ=σ↑↓σ↑↑


using the polarized cross section (σαβ) where α refers to the lepton helicity and β to the target helicity.

The charged pion helicity difference (Δσπ++πp) can be written using equations 6 and 7 from Reference <ref name="Christova9907265"> </ref> as

Δσπ++πp=19[4(Δu+Δˉu)+(Δd+Δˉd)]Dπ++πu


Δσπ++πn=19[4(Δd+Δd)+(Δu+Δu)]Dπ++πu



The analogous expressions for the case of a Deuteron target are


σπ+±π2H=59[(u+ˉu)±(d+ˉd)]Dπ+±πu
Δσπ+±π2H=59[(Δu+Δˉu)±(Δd+Δˉd)]Dπ+±πu


and unpolarized:

LO models for SIDIS cross section

GJR08FFNS

GSRV

The polarized cross section difference is defined as :

Δσ=σ↑↓σ↑↑


using the polarized cross section (σαβ) where α refers to the lepton helicity and β to the target helicity.

The charged pion helicity difference (Δσπ++πp) can be written using equations 6 and 7 from Reference <ref name="Christova9907265"> </ref> as

Δσπ++πp=19[4(Δu+Δˉu)+(Δd+Δˉd)]Dπ++πu


Δσπ++πn=19[4(Δd+Δd)+(Δu+Δu)]Dπ++πu




The analogous expressions for the case of a Deuteron target are


σπ+±π2H=59[(u+ˉu)±(d+ˉd)]Dπ+±πu
Δσπ+±π2H=59[(Δu+Δˉu)±(Δd+Δˉd)]Dπ+±πu


and unpolarized:


The charged pion asymmetry may be defined as

Aπ+±π1,p=Δσπ+±πpσπ+±πp=[(σpπ+)1/2(σpπ+)3/2]±[(σpπ)1/2(σpπ)3/2][(σpπ+)1/2+(σpπ+)3/2]±[(σpπ)1/2+(σpπ)3/2]


Aπ+±π1,2H=Δσπ+±π2Hσπ+±π2H=[(σ2Hπ+)1/2(σ2Hπ+)3/2]±[(σ2Hπ)1/2(σ2Hπ)3/2][(σ2Hπ+)1/2+(σ2Hπ+)3/2]±[(σ2Hπ)1/2+(σ2Hπ)3/2]


where the fragmentations functions D do not contribute if independent fragmentation, and isospin and charge conjugation are invariant.

Independent fragmentation identifies the process in which quarks fragment into hadrons, independent of the photon-quark scattering process. In other words, the fragmentation process is independent of the initial quark environment, which initiates the hadronization process. Assuming independent fragmentation and using isospin (Dπ+u=Dπ¯u and Dπd=Dπ+¯d ) and charge (Dπ+u=Dπd) conjugation invariance for the fragmentation functions, the following equality holds:

Dπ+±πu=Dπ+u±Dπu=Dπ+±πd


The polarized and unpolarized cross sections for pion electroproduction can be written in terms of valence quark distribution functions in the valence region as:

Δσπ+±πp=19[4(Δu+Δˉu)±(Δd+Δˉd)]Dπ+±πu


Δσπ+±πn=19[4(Δd+Δd)±(Δu+Δu)]Dπ+±πu


Δσπ+±π2H=59[(Δu+Δˉu)±(Δd+Δˉd)]Dπ+±πu


and unpolarized:

σπ+±πp=19[4(u+ˉu)±(d+ˉd)]Dπ+±πu


σπ+±πn=19[4(d+ˉd)±(u+ˉu)]Dπ+±πu


σπ+±π2H=59[(u+ˉu)±(d+ˉd)]Dπ+±πu


In the valence region (xB>0.3), where the sea quark contribution is minimized, the above asymmetries can be expressed in terms of polarized and unpolarized valence quark distributions:

Aπ+±π1,p=4Δuv(x)±Δdv(x)4uv(x)±dv(x)


Aπ+±π1,2H=Δuv(x)+Δdv(x)uv(x)+dv(x)


The ratio of polarized to unpolarized valence up and down quark distributions may then be written as

Δuvuv(x,Q2)=Δσπ+πp+Δσπ+π2Hσπ+πp+σπ+π2H(x,Q2)


and

Δdvdv(x,Q2)=Δσπ+πp4Δσπ+π2Hσπ+πp4σπ+π2H(x,Q2)


The ratio of polarized to unpolarized valence quark distribution functions can be extracted using the last two equations.

Next to leading Order (NLO)

<ref name="Sissakian074032"> A.N. Sissakian, O. Yu. Shevchenko, and O.N. Ivanov Phys Rev D 70 (074032) 2004 https://arxiv.org/abs/hep-ph/0411243</ref>


Towards semi-inclusive deep inelastic scattering at next-to-next-to-leading order, Daniele Anderle https://arxiv.org/pdf/1612.01293.pdf


D. de Florian, R. Sassot, M. Epele, R. J. Herna ́ndez-Pinto, M. Stratmann. Phys. Rev. D 91 014035 (2015).

Global extraction of the parton-to-pion fragmentation functions at NLO accuracy in QCD R. J. Herna ́ndez-Pinto 2016 https://arxiv.org/pdf/1609.02455.pdf

2014Next-to-Leading Order QCD Factorization for Semi-Inclusive Deep Inelastic Scattering at Twist 4, Zhong-Bo Kang, Enke Wang, Xin-Nian Wang, and Hongxi Xing Phys. Rev. Lett. 112, 102001 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.102001

References

2009 talk by Xiodong Jiang, kinematic cuts identified (Q2 >1GeV2,W >2GeV,W' (missing mass of undetected hadrons) >1.5GeV,xF >0,pπ >2GeV/c) , http://www.int.washington.edu/talks/WorkShops/int_09_3/People/Jiang_X/Jiang.pdf


Bibliography

</references>

Documents

File:Christova Leader hep-ph-9907265.pdf

File:Sissakian PhysRevD70 074032 2004.pdf


https://twiki.cern.ch/twiki/bin/view/LHCPhysics/PDF


SIDIS cross sections

File:Asauryan nucle-ex1103.1649.pdf

Delta_D_over_D