|
|
| (45 intermediate revisions by the same user not shown) |
| Line 1: |
Line 1: |
| | =Beam Line info= | | =Beam Line info= |
| | | | |
| − | 0 degree line | + | Machine: 25b Linac |
| | + | |
| | + | 0<math>°</math> port |
| | | | |
| − | Aluminum window = 0.5mm thick. Radius = 23.813mm
| + | Beam Energy: 8 MeV |
| | | | |
| − | Air gap between Aluminum window and glass slide = 45mm
| + | Rep Rate: Max (150Hz?) |
| | | | |
| − | Glass slide Thickness = 1mm
| + | Pulse Width: 100ns |
| | | | |
| | =Run Plan= | | =Run Plan= |
| | | | |
| − | '''To find operating point'''
| + | ==To find operating point== |
| | | | |
| | - Will use 15 OSLs from reproducibility study to make sure that dose is within acceptable range | | - Will use 15 OSLs from reproducibility study to make sure that dose is within acceptable range |
| | | | |
| − | '''Experiment'''
| + | ===Table=== |
| | | | |
| − | 85 Nanodot OSLs for use (dose not include OSLs from reproducibility study)
| + | '''Start at 7am''' |
| | | | |
| − | - upper limit of OSLs is 15Gy, want to be around 7.5Gy with multiple pulses | + | :{| border="2" style="text-align:center;" |cellpadding="20" cellspacing="0" |
| | + | ! scope="col" style="width: 50px;" | Shot # |
| | + | ! scope="col" style="width: 150px;" | Number of Pulses |
| | + | ! scope="col" style="width: 150px;" | Number of OSLs |
| | + | ! scope="col" style="width: 150px;" | Beam Current |
| | + | ! scope="col" style="width: 150px;" | Dose/pulse |
| | + | ! scope="col" style="width: 150px;" | Expected Dose/pulse |
| | + | |- |
| | + | | 1 || 80 || 1 ||50 mA || || |
| | + | |- |
| | + | | 2 || || 1 || mA || || |
| | + | |- |
| | + | | 3 || || 1 || mA || || |
| | + | |- |
| | + | | 4 || || 1 || mA || || |
| | + | |- |
| | + | | 5 || || 1 || mA || || |
| | + | |- |
| | + | | 6 || || 1 || mA || || |
| | + | |- |
| | + | | 7 || || 1 || mA || || |
| | + | |- |
| | + | | 8 || || 1 || mA || || |
| | + | |- |
| | + | | 9 || || 1 || mA || || |
| | + | |- |
| | + | | 10 || || 1 || mA || || |
| | + | |- |
| | + | | 11 || || 1 || mA || || |
| | + | |- |
| | + | | 12 || || 1 || mA|| || |
| | + | |- |
| | + | | 13 || || 1 || mA|| || |
| | + | |- |
| | + | | 14 || || 1 || mA|| || |
| | + | |- |
| | + | | 15 || || 1 || mA|| || |
| | + | |} |
| | | | |
| − | Machine: 25b Linac
| + | ==Experiment== |
| | | | |
| − | Beam Energy: 8 MeV
| + | 85 Nanodot OSLs for use (dose not include OSLs from reproducibility study) |
| | | | |
| − | Rep Rate: Max (150Hz)
| + | - upper limit of OSLs is 15Gy, want to be around 7.5Gy with multiple pulses |
| | | | |
| | Will talk to engineers about double pulsing and guaranteeing number of pulses and update. | | Will talk to engineers about double pulsing and guaranteeing number of pulses and update. |
| | + | |
| | + | ===Table=== |
| | | | |
| | :{| border="2" style="text-align:center;" |cellpadding="20" cellspacing="0 | | :{| border="2" style="text-align:center;" |cellpadding="20" cellspacing="0 |
| | |- | | |- |
| − | | Shot # ||Start Time || End Time || Number of Pulses || Number of OSLs || Distance to end of beampipe || Beam Current || Aluminum Brick | + | ! scope="col" style="width: 50px;" | Shot # |
| | + | ! scope="col" style="width: 120px;" | Number of Pulses |
| | + | ! scope="col"| Number of OSLs |
| | + | ! scope="col" style="width: 150px;" | Beam Current |
| | + | ! scope="col" style="width: 150px;" | Aluminum Brick |
| | + | ! scope="col" style="width: 150px;" | Dose/Pulse |
| | + | ! scope="col" style="width: 150px;" | Expected Dose/Pulse |
| | |- | | |- |
| − | | 1 ||7:00am || 7:05am || 2 || 1 || 1m || 5 mA || Out | + | | 1 || || 1 || mA || Out || || |
| | |- | | |- |
| − | | 2 ||7:10am || 7:15am || 2 || 1 || 1m || 10 mA || Out | + | | 2 || || 1 || mA || Out || || |
| | |- | | |- |
| − | | 3 ||7:20am || 7:25am || 2 || 1 || 1m || 25 mA || Out | + | | 3|| || 1 || mA || Out || || |
| | |- | | |- |
| − | | 4 ||7:30am || 7:35am || 2 || 1 || 1m || 50 mA || Out | + | | 4 || || 1 || mA || Out || || |
| | |- | | |- |
| − | | 5 ||7:40am || 7:45am || 2 || 1 || 1m || 25 mA || Out | + | | 5 || || 1 || mA || Out || || |
| | |- | | |- |
| − | | 6 ||7:50am || 7:55am || 2 || 1 || 1m || 25 mA || Out | + | | 6 || || 1 || mA || Out || || |
| | |- | | |- |
| − | | 7 ||8:00am || 8:05am || 2 || 16 || 1m || 25 mA || In | + | | 7 || || 16 || mA || In || || |
| | |- | | |- |
| − | | 8 ||8:10am || 8:15am || 2 || 16 || 1m || 25 mA || In | + | | 8 || || 16 || mA || In || || |
| | |- | | |- |
| − | | 9 ||8:20am || 8:25am || 2 || 16 || 1m || 25 mA || Out | + | | 9 || || 16 || mA || Out || || |
| | |- | | |- |
| − | | 10 ||8:30am || 8:35am || 2 || 16 || 1m || 25 mA || Out | + | | 10 || || 16 || mA || Out || || |
| | |- | | |- |
| − | | 11 ||8:40am || 8:45am || 2 || 16 || 1m || 25 mA || Out | + | | 11 || || 16 || mA || Out || || |
| | |- | | |- |
| | |} | | |} |
| − |
| |
| − |
| |
| − | Highest single pulse simulated parameters are 25mA with 100ns pulse width.
| |
| | | | |
| | =[[Absorbed Dose Information]]= | | =[[Absorbed Dose Information]]= |
| | | | |
| − | ==100mA, 100ns pulse width, 25cm from beam pipe== | + | Titanium window = 0.5mm thick. Radius = 23.813mm |
| | | | |
| − | Assuming <math>100\frac{mA}{pulse}</math> and a pulse width of <math>100ns</math>
| + | Air gap between Titanium window and glass slide = 45mm |
| | | | |
| − | Then <math>100\frac{mA}{pulse}=100\frac{mC}{s*pulse}=0.1\frac{C}{s*pulse}</math>
| + | Glass slide Thickness = 1mm |
| − | | |
| − | <math>0.1\frac{C}{s*pulse}(100ns)=10*10^{-9}\frac{C}{pulse}</math>
| |
| − | | |
| − | <math>10*10^{-9}\frac{C}{pulse}*\frac{1\ e-}{1.602*10^{-19}}=6.2422*10^{10}\frac{e-}{pulse}</math>
| |
| − | | |
| − | Using a distance of 25cm for all simulations following.
| |
| − | | |
| − | ===OSL===
| |
| − | | |
| − | <math>\frac{1}{1000}</math> of a pulse. ~62mil e- simulated, ~62bil e- per pulse. With beam parameters given above.
| |
| − | | |
| − | Deposited Energy: <math>4.46596*10^{6} MeV</math>
| |
| − | | |
| − | OSL geometry: 0.501cm diameter cylinder of 0.03cm thickness with beam incident on flat face.
| |
| − | | |
| − | OSL Crystal density<math>=3.9698\frac{g}{cm^{3}}</math>
| |
| − | | |
| − | Mass of a single OSL crystal: <math>(\pi(0.2505)^{2}*(0.03))*(3.9698)=0.0234777g</math>
| |
| − | | |
| − | Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes <math>4.46596*10^{9} MeV</math>
| |
| − | | |
| − | Converting to Joules for dose calculation: <math>4.46596*10^{9} MeV=7.15525*10^{-4}J</math>
| |
| − | | |
| − | Average dose per pulse <math>\frac{7.15525*10^{-4}J}{0.0234777*10^{-3}\ Kg}=30.4768\ Gy=3047.68\ rad</math>
| |
| − | | |
| − | ===Quartz===
| |
| − | | |
| − | <math>\frac{1}{1000}</math> of a pulse. ~62mil e- simulated, ~62bil e- per pulse. With beam parameters given above.
| |
| − | | |
| − | Deposited Energy: <math>4.71875*10^{8} MeV</math>
| |
| − | | |
| − | Quartz Geometry: 1 inch cylinder with electrons incident upon the base of the cylinder.
| |
| − | | |
| − | Quartz density<math>=2.32\frac{g}{cm^{3}}</math>
| |
| − | | |
| − | Mass of Quartz used in simulation: <math>(\pi(1.27)^{2}*(2.54))*(2.32)=29.8593g</math>
| |
| − | | |
| − | Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes <math>4.71875*10^{11} MeV</math>
| |
| − | | |
| − | Converting to Joules for dose calculation: <math>4.71875*10^{11} MeV=0.0756027J</math>
| |
| − | | |
| − | Average dose per pulse <math>\frac{0.0756027\ J}{29.8593*10^{-3}\ Kg}=2.53196\ Gy=253.196\ rad</math>
| |
| − | | |
| − | ==25mA, 100ns pulse width, 25cm from beam pipe==
| |
| − | | |
| − | Cut current by a factor of 4. 100mA->25mA
| |
| − | | |
| − | Assuming <math>25\frac{mA}{pulse}</math> and a pulse width of <math>100ns</math>
| |
| − | | |
| − | Then <math>25\frac{mA}{pulse}=25\frac{mC}{s*pulse}=0.025\frac{C}{s*pulse}</math>
| |
| − | | |
| − | <math>0.025\frac{C}{s*pulse}(100ns)=2.5*10^{-9}\frac{C}{pulse}</math>
| |
| − | | |
| − | <math>2.5*10^{-9}\frac{C}{pulse}*\frac{1\ e-}{1.602*10^{-19}}=1.56055*10^{10}\frac{e-}{pulse}</math>
| |
| − | | |
| − | Using a distance of 25cm for all simulations following.
| |
| − | | |
| − | ===OSL===
| |
| − | | |
| − | <math>\frac{1}{1000}</math> of a pulse. ~15mil e- simulated, ~15bil e- per pulse. With beam parameters given above.
| |
| − | | |
| − | Deposited Energy: <math>1.11636*10^{6} MeV</math>
| |
| − | | |
| − | OSL geometry: 0.501cm diameter cylinder of 0.03cm thickness with beam incident on flat face.
| |
| − | | |
| − | OSL Crystal density<math>=3.9698\frac{g}{cm^{3}}</math>
| |
| − | | |
| − | Mass of a single OSL crystal: <math>(\pi(0.2505)^{2}*(0.03))*(3.9698)=0.0234777g</math>
| |
| − | | |
| − | Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes <math>1.11636*10^{9} MeV</math>
| |
| − | | |
| − | Converting to Joules for dose calculation: <math>1.11636*10^{9} MeV=1.78841*10^{-4}J</math>
| |
| − | | |
| − | Average dose per pulse <math>\frac{1.78841*10^{-4}J}{0.0234777*10^{-3}\ Kg}=7.61748\ Gy=761.748\ rad</math>
| |
| − | | |
| − | ===Quartz===
| |
| − | | |
| − | <math>\frac{1}{1000}</math> of a pulse. ~15mil e- simulated, ~15bil e- per pulse. With beam parameters given above.
| |
| − | | |
| − | Deposited Energy: <math>9.82027*10^{7} MeV</math>
| |
| − | | |
| − | Quartz Geometry: 1 inch diameter, 0.5 inch tall cylinder with electrons incident upon the base of the cylinder.
| |
| − | | |
| − | Quartz density<math>=2.32\frac{g}{cm^{3}}</math>
| |
| − | | |
| − | Mass of Quartz used in simulation: <math>(\pi(1.27)^{2}*(1.27))*(2.32)=14.9296g</math>
| |
| − | | |
| − | Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes <math>9.82027*10^{10} MeV</math>
| |
| − | | |
| − | Converting to Joules for dose calculation: <math>9.82027*10^{10} MeV=0.0157321J</math>
| |
| − | | |
| − | Average dose per pulse <math>\frac{0.0157321\ J}{14.9296*10^{-3}\ Kg}=1.05375\ Gy=105.375\ rad</math>
| |
| − | | |
| − | ==25mA, 100ns pulse width, 50cm from beam pipe==
| |
| − | | |
| − | Changed distance from end of beam pipe from 25cm to 50cm.
| |
| − | | |
| − | Cut current by a factor of 4. 100mA->25mA
| |
| − | | |
| − | Assuming <math>25\frac{mA}{pulse}</math> and a pulse width of <math>100ns</math>
| |
| − | | |
| − | Then <math>25\frac{mA}{pulse}=25\frac{mC}{s*pulse}=0.025\frac{C}{s*pulse}</math>
| |
| − | | |
| − | <math>0.025\frac{C}{s*pulse}(100ns)=2.5*10^{-9}\frac{C}{pulse}</math>
| |
| − | | |
| − | <math>2.5*10^{-9}\frac{C}{pulse}*\frac{1\ e-}{1.602*10^{-19}}=1.56055*10^{10}\frac{e-}{pulse}</math>
| |
| − | | |
| − | ===OSL===
| |
| − | | |
| − | <math>\frac{1}{1000}</math> of a pulse. ~15mil e- simulated, ~15bil e- per pulse. With beam parameters given above.
| |
| − | | |
| − | Deposited Energy: <math>9.29701*10^{5} MeV</math>
| |
| − | | |
| − | OSL geometry: 0.501cm diameter cylinder of 0.03cm thickness with beam incident on flat face.
| |
| − | | |
| − | OSL Crystal density<math>=3.9698\frac{g}{cm^{3}}</math>
| |
| − | | |
| − | Mass of a single OSL crystal: <math>(\pi(0.2505)^{2}*(0.03))*(3.9698)=0.0234777g</math>
| |
| − | | |
| − | Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes <math>9.29701*10^{8} MeV</math>
| |
| − | | |
| − | Converting to Joules for dose calculation: <math>9.29701*10^{8} MeV=1.48938*10^{-4}J</math>
| |
| − | | |
| − | Average dose per pulse: <math>\frac{1.48938*10^{-4}J}{0.0234777*10^{-3}\ Kg}=6.34381\ Gy=634.381\ rad</math>
| |
| − | | |
| − | ===Quartz===
| |
| − | | |
| − | <math>\frac{1}{1000}</math> of a pulse. ~15mil e- simulated, ~15bil e- per pulse. With beam parameters given above.
| |
| − | | |
| − | Deposited Energy: <math>9.21601*10^{7} MeV</math>
| |
| − | | |
| − | Quartz Geometry: 1 inch diameter, 0.5 inch tall cylinder with electrons incident upon the base of the cylinder.
| |
| − | | |
| − | Quartz density<math>=2.32\frac{g}{cm^{3}}</math>
| |
| − | | |
| − | Mass of Quartz used in simulation: <math>(\pi(1.27)^{2}*(1.27))*(2.32)=14.9296g</math>
| |
| − | | |
| − | Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes <math>9.21601*10^{10} MeV</math>
| |
| − | | |
| − | Converting to Joules for dose calculation: <math>9.21601*10^{10} MeV=0.0147657J</math>
| |
| − | | |
| − | Average dose per pulse <math>\frac{0.0147657\ J}{14.9296*10^{-3}\ Kg}=0.98902\ Gy=98.902\ rad</math>
| |
| − | | |
| − | ==5mA, 100ns pulse width, 100cm from beam pipe with Titanium window==
| |
| − | | |
| − | Changed distance from end of beam pipe from 25cm to 50cm.
| |
| − | | |
| − | Cut current by a factor of 5. 25mA->5mA
| |
| − | | |
| − | Assuming <math>5\frac{mA}{pulse}</math> and a pulse width of <math>100ns</math>
| |
| − | | |
| − | Then <math>55\frac{mA}{pulse}=5\frac{mC}{s*pulse}=0.005\frac{C}{s*pulse}</math>
| |
| − | | |
| − | <math>0.005\frac{C}{s*pulse}(100ns)=0.5*10^{-9}\frac{C}{pulse}</math>
| |
| − | | |
| − | <math>0.5*10^{-9}\frac{C}{pulse}*\frac{1\ e-}{1.602*10^{-19}}=3.1211*10^{9}\frac{e-}{pulse}</math>
| |
| − | | |
| − | ===OSL===
| |
| − | | |
| − | <math>\frac{1}{1000}</math> of a pulse. ~3.1mil e- simulated, ~3.1bil e- per pulse. With beam parameters given above.
| |
| − | | |
| − | Deposited Energy: <math>--*10^{-} MeV</math>
| |
| − | | |
| − | OSL geometry: 0.501cm diameter cylinder of 0.03cm thickness with beam incident on flat face.
| |
| − | | |
| − | OSL Crystal density<math>=3.9698\frac{g}{cm^{3}}</math>
| |
| − | | |
| − | Mass of a single OSL crystal: <math>(\pi(0.2505)^{2}*(0.03))*(3.9698)=0.0234777g</math>
| |
| − | | |
| − | Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes <math>---*10^{} MeV</math>
| |
| − | | |
| − | Converting to Joules for dose calculation: <math>---*10^{} MeV=---*10^{}J</math>
| |
| − | | |
| − | Average dose per pulse: <math>\frac{---*10^{}J}{0.0234777*10^{-3}\ Kg}=---\ Gy=---\ rad</math>
| |
| − | | |
| − | ===Quartz===
| |
| − | | |
| − | <math>\frac{1}{1000}</math> of a pulse. ~15mil e- simulated, ~15bil e- per pulse. With beam parameters given above.
| |
| − | | |
| − | Deposited Energy: <math>---*10^{} MeV</math>
| |
| − | | |
| − | Quartz Geometry: 1 inch diameter, 0.5 inch tall cylinder with electrons incident upon the base of the cylinder.
| |
| − | | |
| − | Quartz density<math>=2.32\frac{g}{cm^{3}}</math>
| |
| | | | |
| − | Mass of Quartz used in simulation: <math>(\pi(1.27)^{2}*(1.27))*(2.32)=14.9296g</math>
| + | ==[[5mA, 100ns pulse width, 100cm from beam pipe with Titanium window]]== |
| | | | |
| − | Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes <math>---*10^{} MeV</math>
| + | ==[[25mA, 100ns pulse width, 100cm from beam pipe, with Titanium window]]== |
| | | | |
| − | Converting to Joules for dose calculation: <math>---*10^{} MeV=---J</math>
| + | ==[[10mA, 100ns pulse width, 100cm from beam pipe, with Titanium window]]== |
| | | | |
| − | Average dose per pulse <math>\frac{----\ J}{14.9296*10^{-3}\ Kg}=---\ Gy=---\ rad</math>
| + | ==[[100mA, 100ns pulse width, 100cm from beam pipe, with Titanium window]]== |
| | | | |
| − | ===Plastic (Polyethylene)=== | + | ==[[25mA, 100ns pulse width, 50cm from beam pipe, tungsten target with aluminum beamstop]]== |
| | | | |
| − | ==25mA, 100ns pulse width, 50cm from beam pipe, tungsten target with aluminum beamstop==
| + | ---- |
| | | | |
| − | Added .254cm of Tungsten and 2.286cm of Aluminum to be used as converter and beam stop.
| + | ==[[100mA, 100ns pulse width, 25cm from beam pipe]]== |
| | | | |
| − | [[File:Radiator.png]] | + | ==[[25mA, 100ns pulse width, 25cm from beam pipe]]== |
| | | | |
| − | Assuming <math>25\frac{mA}{pulse}</math> and a pulse width of <math>100ns</math>
| + | ==[[25mA, 100ns pulse width, 50cm from beam pipe]]== |
| | | | |
| − | Then <math>25\frac{mA}{pulse}=25\frac{mC}{s*pulse}=0.025\frac{C}{s*pulse}</math>
| |
| | | | |
| − | <math>0.025\frac{C}{s*pulse}(100ns)=2.5*10^{-9}\frac{C}{pulse}</math>
| + | ---- |
| | | | |
| − | <math>2.5*10^{-9}\frac{C}{pulse}*\frac{1\ e-}{1.602*10^{-19}}=1.56055*10^{10}\frac{e-}{pulse}</math>
| + | Low Dose Line: Dose = (0.11 +/- 0.01)(PMT Counts) + (119.29 +/- 29.08) |
| | | | |
| − | ===OSL (8MeV)=== | + | High Dose Line: Dose = (1.54 +/- 0.06)(PMT Counts) + (1004.80 +/- 1006.24) |
| | | | |
| − | <math>\frac{1}{1000}</math> of a pulse. ~15mil e- simulated, ~15bil e- per pulse. With beam parameters given above.
| |
| | | | |
| − | Deposited Energy: <math>19.1759 MeV</math>
| + | Peak Current: <math>50\frac{mA}{pulse}</math> |
| | | | |
| − | OSL geometry: 0.501cm diameter cylinder of 0.03cm thickness with beam incident on flat face.
| + | Pulse Width: <math>500ns</math> |
| | | | |
| − | OSL Crystal density<math>=3.9698\frac{g}{cm^{3}}</math>
| |
| | | | |
| − | Mass of a single OSL crystal: <math>(\pi(0.2505)^{2}*(0.03))*(3.9698)=0.0234777g</math>
| + | <math>50\frac{mA}{pulse}=50\frac{mC}{s*pulse}=0.050\frac{C}{s*pulse}</math> |
| | | | |
| − | Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes <math>9.29701*10^{8} MeV</math>
| + | <math>0.050\frac{C}{s*pulse}(500ns)=2.5*10^{-8}\frac{C}{pulse}</math> |
| | | | |
| − | Converting to Joules for dose calculation: <math>19.1759*10^{3} MeV=3.0723177*10^{-9}J</math>
| + | <math>2.5*10^{-8}\frac{C}{pulse}*\frac{1\ e-}{1.602*10^{-19}}=1.56055*10^{11}\frac{e-}{pulse}</math> |
| | | | |
| − | Average dose per pulse: <math>\frac{3.0723177*10^{-9}J}{0.0234777*10^{-3}\ Kg}=0.000130861\ Gy=0.0130861\ rad</math>
| |
| | | | |
| | | | |