|
|
| (62 intermediate revisions by the same user not shown) |
| Line 1: |
Line 1: |
| | =Beam Line info= | | =Beam Line info= |
| | | | |
| − | 0 degree line
| + | Machine: 25b Linac |
| | | | |
| − | Aluminum window = 0.5mm thick. Radius = 23.813mm
| + | 0<math>°</math> port |
| | | | |
| − | Air gap between Aluminum window and glass slide = 45mm
| + | Beam Energy: 8 MeV |
| | | | |
| − | Glass slide Thickness = 1mm
| + | Rep Rate: Max (150Hz?) |
| | + | |
| | + | Pulse Width: 100ns |
| | | | |
| | =Run Plan= | | =Run Plan= |
| | | | |
| | + | ==To find operating point== |
| | | | |
| − | 85 useable OSLs
| + | - Will use 15 OSLs from reproducibility study to make sure that dose is within acceptable range |
| − | | |
| − | Machine: 24b Linac
| |
| | | | |
| − | Beam Energy: 8 MeV
| + | ===Table=== |
| | | | |
| − | Rep Rate: Max (180Hz)?
| + | '''Start at 7am''' |
| | | | |
| − | :{| border="2" style="text-align:center;" |cellpadding="20" cellspacing="0 | + | :{| border="2" style="text-align:center;" |cellpadding="20" cellspacing="0" |
| − | |-
| + | ! scope="col" style="width: 50px;" | Shot # |
| − | | Shot # ||Start Time || End Time || Number of Pulses || Number of OSLs || Distance to end of beampipe || Beam Current || Aluminum Brick || Background Subtracted PMT Counts | + | ! scope="col" style="width: 150px;" | Number of Pulses |
| − | |-
| + | ! scope="col" style="width: 150px;" | Number of OSLs |
| − | | 1 ||7am || 7:05am || 2 || 1 || 25cm || 25 mA || Out ||
| + | ! scope="col" style="width: 150px;" | Beam Current |
| − | |-
| + | ! scope="col" style="width: 150px;" | Dose/pulse |
| − | | 2 ||7am || 7:05am || 2 || 1 || 25cm || 25 mA || Out ||
| + | ! scope="col" style="width: 150px;" | Expected Dose/pulse |
| − | |-
| |
| − | | 3 ||7am || 7:05am || 2 || 1 || 25cm || 25 mA || Out ||
| |
| | |- | | |- |
| − | | 4 ||7am || 7:05am || 2 || 1 || 25cm || 25 mA || Out || | + | | 1 || 80 || 1 ||50 mA || || |
| | |- | | |- |
| − | | 5 ||7am || 7:05am || 2 || 1 || 25cm || 25 mA || Out || | + | | 2 || || 1 || mA || || |
| | |- | | |- |
| − | | 6 ||7am || 7:05am || 2 || 1 || 25cm || 25 mA || Out || | + | | 3 || || 1 || mA || || |
| | |- | | |- |
| − | | 7 ||7am || 7:05am || 2 || 1 || 25cm || 25 mA || Out || | + | | 4 || || 1 || mA || || |
| | |- | | |- |
| − | | 8 ||7am || 7:05am || 2 || 1 || 25cm || 25 mA || Out || | + | | 5 || || 1 || mA || || |
| | |- | | |- |
| − | | 9 ||7am || 7:05am || 2 || 1 || 25cm || 25 mA || Out || | + | | 6 || || 1 || mA || || |
| | |- | | |- |
| − | | 10 ||7am || 7:05am || 2 || 1 || 25cm || 25 mA || Out ||
| + | | 7 || || 1 || mA || || |
| | |- | | |- |
| − | | 11 ||7am || 7:05am || 2 || 1 || 25cm || 25 mA || Out || | + | | 8 || || 1 || mA || || |
| | |- | | |- |
| − | | 12 ||7am || 7:05am || 2 || 1 || 25cm || 25 mA || Out || | + | | 9 || || 1 || mA || || |
| | |- | | |- |
| − | | 13 ||7am || 7:05am || 2 || 1 || 25cm || 25 mA || Out || | + | | 10 || || 1 || mA || || |
| | |- | | |- |
| − | | 14 ||7am || 7:05am || 2 || 1 || 25cm || 25 mA || Out || | + | | 11 || || 1 || mA || || |
| | |- | | |- |
| − | | 15 ||7am || 7:05am || 2 || 1 || 25cm || 25 mA || Out || | + | | 12 || || 1 || mA|| || |
| | |- | | |- |
| − | | 16 ||7am || 7:05am || 2 || 1 || 25cm || 25 mA || Out || | + | | 13 || || 1 || mA|| || |
| | |- | | |- |
| − | | 17 ||7am || 7:05am || 2 || 1 || 25cm || 25 mA || Out || | + | | 14 || || 1 || mA|| || |
| | |- | | |- |
| | + | | 15 || || 1 || mA|| || |
| | |} | | |} |
| | | | |
| − | =[[Absorbed Dose Information]]= | + | ==Experiment== |
| | | | |
| − | ==100mA, 100ns pulse width, 25cm from beam pipe==
| + | 85 Nanodot OSLs for use (dose not include OSLs from reproducibility study) |
| | | | |
| − | Assuming <math>100\frac{mA}{pulse}</math> and a pulse width of <math>100ns</math>
| + | - upper limit of OSLs is 15Gy, want to be around 7.5Gy with multiple pulses |
| | | | |
| − | Then <math>100\frac{mA}{pulse}=100\frac{mC}{s*pulse}=0.1\frac{C}{s*pulse}</math>
| + | Will talk to engineers about double pulsing and guaranteeing number of pulses and update. |
| | | | |
| − | <math>0.1\frac{C}{s*pulse}(100ns)=10*10^{-9}\frac{C}{pulse}</math>
| + | ===Table=== |
| | | | |
| − | <math>10*10^{-9}\frac{C}{pulse}*\frac{1\ e-}{1.602*10^{-19}}=6.2422*10^{10}\frac{e-}{pulse}</math>
| + | :{| border="2" style="text-align:center;" |cellpadding="20" cellspacing="0 |
| | + | |- |
| | + | ! scope="col" style="width: 50px;" | Shot # |
| | + | ! scope="col" style="width: 120px;" | Number of Pulses |
| | + | ! scope="col"| Number of OSLs |
| | + | ! scope="col" style="width: 150px;" | Beam Current |
| | + | ! scope="col" style="width: 150px;" | Aluminum Brick |
| | + | ! scope="col" style="width: 150px;" | Dose/Pulse |
| | + | ! scope="col" style="width: 150px;" | Expected Dose/Pulse |
| | + | |- |
| | + | | 1 || || 1 || mA || Out || || |
| | + | |- |
| | + | | 2 || || 1 || mA || Out || || |
| | + | |- |
| | + | | 3|| || 1 || mA || Out || || |
| | + | |- |
| | + | | 4 || || 1 || mA || Out || || |
| | + | |- |
| | + | | 5 || || 1 || mA || Out || || |
| | + | |- |
| | + | | 6 || || 1 || mA || Out || || |
| | + | |- |
| | + | | 7 || || 16 || mA || In || || |
| | + | |- |
| | + | | 8 || || 16 || mA || In || || |
| | + | |- |
| | + | | 9 || || 16 || mA || Out || || |
| | + | |- |
| | + | | 10 || || 16 || mA || Out || || |
| | + | |- |
| | + | | 11 || || 16 || mA || Out || || |
| | + | |- |
| | + | |} |
| | | | |
| − | Using a distance of 25cm for all simulations following.
| + | =[[Absorbed Dose Information]]= |
| | | | |
| − | ===OSL=== | + | Titanium window = 0.5mm thick. Radius = 23.813mm |
| | | | |
| − | <math>\frac{1}{1000}</math> of a pulse. ~62mil e- simulated, ~62bil e- per pulse. With beam parameters given above.
| + | Air gap between Titanium window and glass slide = 45mm |
| | | | |
| − | Deposited Energy: <math>4.46596*10^{6} MeV</math>
| + | Glass slide Thickness = 1mm |
| | | | |
| − | OSL geometry: 0.501cm diameter cylinder of 0.03cm thickness with beam incident on flat face.
| + | ==[[5mA, 100ns pulse width, 100cm from beam pipe with Titanium window]]== |
| | | | |
| − | OSL Crystal density<math>=3.9698\frac{g}{cm^{3}}</math>
| + | ==[[25mA, 100ns pulse width, 100cm from beam pipe, with Titanium window]]== |
| | | | |
| − | Mass of a single OSL crystal: <math>(\pi(0.2505)^{2}*(0.03))*(3.9698)=0.0234777g</math>
| + | ==[[10mA, 100ns pulse width, 100cm from beam pipe, with Titanium window]]== |
| | | | |
| − | Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes <math>4.46596*10^{9} MeV</math>
| + | ==[[100mA, 100ns pulse width, 100cm from beam pipe, with Titanium window]]== |
| | | | |
| − | Converting to Joules for dose calculation: <math>4.46596*10^{9} MeV=7.15525*10^{-4}J</math>
| + | ==[[25mA, 100ns pulse width, 50cm from beam pipe, tungsten target with aluminum beamstop]]== |
| | | | |
| − | Average dose per pulse <math>\frac{7.15525*10^{-4}J}{0.0234777*10^{-3}\ Kg}=30.4768\ Gy=3047.68\ rad</math>
| + | ---- |
| | | | |
| − | ===Quartz=== | + | ==[[100mA, 100ns pulse width, 25cm from beam pipe]]== |
| | | | |
| − | <math>\frac{1}{1000}</math> of a pulse. ~62mil e- simulated, ~62bil e- per pulse. With beam parameters given above.
| + | ==[[25mA, 100ns pulse width, 25cm from beam pipe]]== |
| | | | |
| − | Deposited Energy: <math>4.71875*10^{8} MeV</math>
| + | ==[[25mA, 100ns pulse width, 50cm from beam pipe]]== |
| | | | |
| − | Quartz Geometry: 1 inch cylinder with electrons incident upon the base of the cylinder.
| |
| | | | |
| − | Quartz density<math>=2.32\frac{g}{cm^{3}}</math>
| + | ---- |
| − | | |
| − | Mass of Quartz used in simulation: <math>(\pi(1.27)^{2}*(2.54))*(2.32)=29.8593g</math>
| |
| − | | |
| − | Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes <math>4.71875*10^{11} MeV</math>
| |
| − | | |
| − | Converting to Joules for dose calculation: <math>4.71875*10^{11} MeV=0.0756027J</math>
| |
| | | | |
| − | Average dose per pulse <math>\frac{0.0756027\ J}{29.8593*10^{-3}\ Kg}=2.53196\ Gy=253.196\ rad</math>
| + | Low Dose Line: Dose = (0.11 +/- 0.01)(PMT Counts) + (119.29 +/- 29.08) |
| | | | |
| − | ==25mA, 100ns pulse width, 25cm from beam pipe== | + | High Dose Line: Dose = (1.54 +/- 0.06)(PMT Counts) + (1004.80 +/- 1006.24) |
| | | | |
| − | Cut current by a factor of 4. 100mA->25mA
| |
| | | | |
| − | Assuming <math>25\frac{mA}{pulse}</math> and a pulse width of <math>100ns</math>
| + | Peak Current: <math>50\frac{mA}{pulse}</math> |
| | | | |
| − | Then <math>25\frac{mA}{pulse}=25\frac{mC}{s*pulse}=0.025\frac{C}{s*pulse}</math>
| + | Pulse Width: <math>500ns</math> |
| | | | |
| − | <math>0.025\frac{C}{s*pulse}(100ns)=2.5*10^{-9}\frac{C}{pulse}</math>
| |
| | | | |
| − | <math>2.5*10^{-9}\frac{C}{pulse}*\frac{1\ e-}{1.602*10^{-19}}=1.56055*10^{10}\frac{e-}{pulse}</math> | + | <math>50\frac{mA}{pulse}=50\frac{mC}{s*pulse}=0.050\frac{C}{s*pulse}</math> |
| | | | |
| − | Using a distance of 25cm for all simulations following.
| + | <math>0.050\frac{C}{s*pulse}(500ns)=2.5*10^{-8}\frac{C}{pulse}</math> |
| | | | |
| − | ===OSL=== | + | <math>2.5*10^{-8}\frac{C}{pulse}*\frac{1\ e-}{1.602*10^{-19}}=1.56055*10^{11}\frac{e-}{pulse}</math> |
| | | | |
| − | <math>\frac{1}{1000}</math> of a pulse. ~15mil e- simulated, ~15bil e- per pulse. With beam parameters given above.
| |
| − |
| |
| − | Deposited Energy: <math>1.11636*10^{6} MeV</math>
| |
| − |
| |
| − | OSL geometry: 0.501cm diameter cylinder of 0.03cm thickness with beam incident on flat face.
| |
| − |
| |
| − | OSL Crystal density<math>=3.9698\frac{g}{cm^{3}}</math>
| |
| − |
| |
| − | Mass of a single OSL crystal: <math>(\pi(0.2505)^{2}*(0.03))*(3.9698)=0.0234777g</math>
| |
| − |
| |
| − | Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes <math>1.11636*10^{9} MeV</math>
| |
| − |
| |
| − | Converting to Joules for dose calculation: <math>1.11636*10^{9} MeV=1.78841*10^{-4}J</math>
| |
| − |
| |
| − | Average dose per pulse <math>\frac{1.78841*10^{-4}J}{0.0234777*10^{-3}\ Kg}=7.61748\ Gy=761.748\ rad</math>
| |
| − |
| |
| − | ===Quartz===
| |
| − |
| |
| − | <math>\frac{1}{1000}</math> of a pulse. ~15mil e- simulated, ~15bil e- per pulse. With beam parameters given above.
| |
| − |
| |
| − | Deposited Energy: <math>9.82027*10^{7} MeV</math>
| |
| − |
| |
| − | Quartz Geometry: 1 inch diameter, 0.5 inch tall cylinder with electrons incident upon the base of the cylinder.
| |
| − |
| |
| − | Quartz density<math>=2.32\frac{g}{cm^{3}}</math>
| |
| − |
| |
| − | Mass of Quartz used in simulation: <math>(\pi(1.27)^{2}*(1.27))*(2.32)=14.9296g</math>
| |
| − |
| |
| − | Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes <math>9.82027*10^{10} MeV</math>
| |
| − |
| |
| − | Converting to Joules for dose calculation: <math>9.82027*10^{10} MeV=0.0157321J</math>
| |
| − |
| |
| − | Average dose per pulse <math>\frac{0.0157321\ J}{14.9296*10^{-3}\ Kg}=1.05375\ Gy=105.375\ rad</math>
| |
| − |
| |
| − | ==25mA, 100ns pulse width, 50cm from beam pipe==
| |
| − |
| |
| − | Changed distance from end of beam pipe from 25cm to 50cm.
| |
| − |
| |
| − | Cut current by a factor of 4. 100mA->25mA
| |
| − |
| |
| − | Assuming <math>25\frac{mA}{pulse}</math> and a pulse width of <math>100ns</math>
| |
| − |
| |
| − | Then <math>25\frac{mA}{pulse}=25\frac{mC}{s*pulse}=0.025\frac{C}{s*pulse}</math>
| |
| − |
| |
| − | <math>0.025\frac{C}{s*pulse}(100ns)=2.5*10^{-9}\frac{C}{pulse}</math>
| |
| − |
| |
| − | <math>2.5*10^{-9}\frac{C}{pulse}*\frac{1\ e-}{1.602*10^{-19}}=1.56055*10^{10}\frac{e-}{pulse}</math>
| |
| − |
| |
| − | ===OSL===
| |
| − |
| |
| − | <math>\frac{1}{1000}</math> of a pulse. ~15mil e- simulated, ~15bil e- per pulse. With beam parameters given above.
| |
| − |
| |
| − | Deposited Energy: <math>9.29701*10^{5} MeV</math>
| |
| − |
| |
| − | OSL geometry: 0.501cm diameter cylinder of 0.03cm thickness with beam incident on flat face.
| |
| − |
| |
| − | OSL Crystal density<math>=3.9698\frac{g}{cm^{3}}</math>
| |
| − |
| |
| − | Mass of a single OSL crystal: <math>(\pi(0.2505)^{2}*(0.03))*(3.9698)=0.0234777g</math>
| |
| − |
| |
| − | Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes <math>9.29701*10^{8} MeV</math>
| |
| − |
| |
| − | Converting to Joules for dose calculation: <math>9.29701*10^{8} MeV=1.48938*10^{-4}J</math>
| |
| − |
| |
| − | Average dose per pulse: <math>\frac{1.48938*10^{-4}J}{0.0234777*10^{-3}\ Kg}=6.34381\ Gy=634.381\ rad</math>
| |
| − |
| |
| − | ===Quartz===
| |
| − |
| |
| − | <math>\frac{1}{1000}</math> of a pulse. ~15mil e- simulated, ~15bil e- per pulse. With beam parameters given above.
| |
| − |
| |
| − | Deposited Energy: <math>9.21601*10^{7} MeV</math>
| |
| − |
| |
| − | Quartz Geometry: 1 inch diameter, 0.5 inch tall cylinder with electrons incident upon the base of the cylinder.
| |
| − |
| |
| − | Quartz density<math>=2.32\frac{g}{cm^{3}}</math>
| |
| − |
| |
| − | Mass of Quartz used in simulation: <math>(\pi(1.27)^{2}*(1.27))*(2.32)=14.9296g</math>
| |
| − |
| |
| − | Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes <math>9.21601*10^{10} MeV</math>
| |
| − |
| |
| − | Converting to Joules for dose calculation: <math>9.21601*10^{10} MeV=0.0147657J</math>
| |
| − |
| |
| − | Average dose per pulse <math>\frac{0.0147657\ J}{14.9296*10^{-3}\ Kg}=0.98902\ Gy=98.902\ rad</math>
| |
| − |
| |
| − | ==25mA, 100ns pulse width, 50cm from beam pipe, tungsten target with aluminum beamstop==
| |
| − |
| |
| − | Added .254cm of Tungsten and 2.286cm of Aluminum to be used as converter and beam stop.
| |
| − |
| |
| − | [[File:Radiator.png]]
| |
| − |
| |
| − | Assuming <math>25\frac{mA}{pulse}</math> and a pulse width of <math>100ns</math>
| |
| − |
| |
| − | Then <math>25\frac{mA}{pulse}=25\frac{mC}{s*pulse}=0.025\frac{C}{s*pulse}</math>
| |
| − |
| |
| − | <math>0.025\frac{C}{s*pulse}(100ns)=2.5*10^{-9}\frac{C}{pulse}</math>
| |
| − |
| |
| − | <math>2.5*10^{-9}\frac{C}{pulse}*\frac{1\ e-}{1.602*10^{-19}}=1.56055*10^{10}\frac{e-}{pulse}</math>
| |
| − |
| |
| − | ===OSL (8MeV)===
| |
| − |
| |
| − | <math>\frac{1}{1000}</math> of a pulse. ~15mil e- simulated, ~15bil e- per pulse. With beam parameters given above.
| |
| − |
| |
| − | Deposited Energy: <math>19.1759 MeV</math>
| |
| − |
| |
| − | OSL geometry: 0.501cm diameter cylinder of 0.03cm thickness with beam incident on flat face.
| |
| − |
| |
| − | OSL Crystal density<math>=3.9698\frac{g}{cm^{3}}</math>
| |
| − |
| |
| − | Mass of a single OSL crystal: <math>(\pi(0.2505)^{2}*(0.03))*(3.9698)=0.0234777g</math>
| |
| − |
| |
| − | Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes <math>9.29701*10^{8} MeV</math>
| |
| − |
| |
| − | Converting to Joules for dose calculation: <math>19.1759*10^{3} MeV=3.0723177*10^{-9}J</math>
| |
| − |
| |
| − | Average dose per pulse: <math>\frac{3.0723177*10^{-9}J}{0.0234777*10^{-3}\ Kg}=0.000130861\ Gy=0.0130861\ rad</math>
| |
| | | | |
| | | | |
| Line 246: |
Line 154: |
| | ---- | | ---- |
| | [[Thesis]] | | [[Thesis]] |
| | + | |
| | + | [[May 31st 2018 - 25b 0 degree port]] |