Difference between revisions of "Linac Run Plan April 2018, Dr. McNulty"

From New IAC Wiki
Jump to navigation Jump to search
 
(64 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
=Beam Line info=
 
=Beam Line info=
  
0 degree line
+
Machine: 25b Linac
  
Aluminum window = 0.5mm thick. Radius = 23.813mm
+
0<math>&deg;</math> port
  
Air gap between Aluminum window and glass slide = 45mm
+
Beam Energy: 8 MeV
  
Glass slide Thickness = 1mm
+
Rep Rate: Max (150Hz?)
 +
 
 +
Pulse Width: 100ns
  
 
=Run Plan=
 
=Run Plan=
  
 +
==To find operating point==
  
 +
- Will use 15 OSLs from reproducibility study to make sure that dose is within acceptable range
  
 +
===Table===
  
=[[Absorbed Dose Information]]=
+
'''Start at 7am'''
  
==100mA, 100ns pulse width, 25cm from beam pipe==
+
:{| border="2" style="text-align:center;" |cellpadding="20" cellspacing="0"
 +
! scope="col" style="width: 50px;" | Shot #
 +
! scope="col" style="width: 150px;" | Number of Pulses
 +
! scope="col" style="width: 150px;" | Number of OSLs
 +
! scope="col" style="width: 150px;" | Beam Current
 +
! scope="col" style="width: 150px;" | Dose/pulse
 +
! scope="col" style="width: 150px;" | Expected Dose/pulse
 +
|-
 +
| 1 || 80 || 1 ||50 mA || ||
 +
|-
 +
| 2 ||  || 1 || mA || ||
 +
|-
 +
| 3  || || 1 ||  mA || ||
 +
|-
 +
| 4  || || 1 ||  mA || ||
 +
|-
 +
| 5  || || 1 || mA || ||
 +
|-
 +
| 6  || || 1 ||  mA || ||
 +
|-
 +
| 7  || || 1 ||  mA || ||
 +
|-
 +
| 8  || || 1 ||  mA || ||
 +
|-
 +
| 9  || || 1 || mA || ||
 +
|-
 +
| 10  || || 1 || mA || ||
 +
|-
 +
| 11  || || 1 || mA || ||
 +
|-
 +
| 12  || || 1 || mA|| ||
 +
|-
 +
| 13  || || 1 || mA|| ||
 +
|-
 +
| 14  || || 1 || mA|| ||
 +
|-
 +
| 15  || || 1 || mA|| ||
 +
|}
  
Assuming <math>100\frac{mA}{pulse}</math> and a pulse width of <math>100ns</math>
+
==Experiment==
  
Then <math>100\frac{mA}{pulse}=100\frac{mC}{s*pulse}=0.1\frac{C}{s*pulse}</math>
+
85 Nanodot OSLs for use (dose not include OSLs from reproducibility study)
  
<math>0.1\frac{C}{s*pulse}(100ns)=10*10^{-9}\frac{C}{pulse}</math>
+
- upper limit of OSLs is 15Gy, want to be around 7.5Gy with multiple pulses
  
<math>10*10^{-9}\frac{C}{pulse}*\frac{1\ e-}{1.602*10^{-19}}=6.2422*10^{10}\frac{e-}{pulse}</math>
+
Will talk to engineers about double pulsing and guaranteeing number of pulses and update.  
  
Using a distance of 25cm for all simulations following.
+
===Table===
  
===OSL===
+
:{| border="2" style="text-align:center;" |cellpadding="20" cellspacing="0
 +
|-
 +
! scope="col" style="width: 50px;" | Shot #
 +
! scope="col" style="width: 120px;" | Number of Pulses
 +
! scope="col"| Number of OSLs
 +
! scope="col" style="width: 150px;" | Beam Current
 +
! scope="col" style="width: 150px;" | Aluminum Brick
 +
! scope="col" style="width: 150px;" | Dose/Pulse
 +
! scope="col" style="width: 150px;" | Expected Dose/Pulse
 +
|-
 +
| 1  ||  || 1 || mA || Out || ||
 +
|-
 +
| 2 ||  || 1 ||  mA || Out || || 
 +
|-
 +
| 3|| || 1 ||  mA || Out  || ||
 +
|-
 +
| 4 || || 1 ||  mA || Out  || ||
 +
|-
 +
| 5 || || 1 || mA || Out  || ||
 +
|-
 +
| 6 || || 1 ||  mA || Out  || ||
 +
|-
 +
| 7 || || 16 ||  mA || In || ||
 +
|-
 +
| 8 || || 16 ||  mA || In  || ||
 +
|-
 +
| 9 || || 16 || mA || Out || ||
 +
|-
 +
| 10 || || 16 || mA || Out || ||
 +
|-
 +
| 11 || || 16 || mA || Out || ||
 +
|-
 +
|}
  
<math>\frac{1}{1000}</math> of a pulse. ~62mil e- simulated, ~62bil e- per pulse. With beam parameters given above.
+
=[[Absorbed Dose Information]]=
  
Deposited Energy: <math>4.46596*10^{6} MeV</math>
+
Titanium window = 0.5mm thick. Radius = 23.813mm
  
OSL geometry: 0.501cm diameter cylinder of 0.03cm thickness with beam incident on flat face.
+
Air gap between Titanium window and glass slide = 45mm
  
OSL Crystal density<math>=3.9698\frac{g}{cm^{3}}</math>
+
Glass slide Thickness = 1mm
  
Mass of a single OSL crystal: <math>(\pi(0.2505)^{2}*(0.03))*(3.9698)=0.0234777g</math>
+
==[[5mA, 100ns pulse width, 100cm from beam pipe with Titanium window]]==
  
Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes <math>4.46596*10^{9} MeV</math>
+
==[[25mA, 100ns pulse width, 100cm from beam pipe, with Titanium window]]==
  
Converting to Joules for dose calculation: <math>4.46596*10^{9} MeV=7.15525*10^{-4}J</math>
+
==[[10mA, 100ns pulse width, 100cm from beam pipe, with Titanium window]]==
  
Average dose per pulse <math>\frac{7.15525*10^{-4}J}{0.0234777*10^{-3}\ Kg}=30.4768\ Gy=3047.68\ rad</math>
+
==[[100mA, 100ns pulse width, 100cm from beam pipe, with Titanium window]]==
  
===Quartz===
+
==[[25mA, 100ns pulse width, 50cm from beam pipe, tungsten target with aluminum beamstop]]==
  
<math>\frac{1}{1000}</math> of a pulse. ~62mil e- simulated, ~62bil e- per pulse. With beam parameters given above.
+
----
  
Deposited Energy: <math>4.71875*10^{8} MeV</math>
+
==[[100mA, 100ns pulse width, 25cm from beam pipe]]==
  
Quartz Geometry: 1 inch cylinder with electrons incident upon the base of the cylinder.
+
==[[25mA, 100ns pulse width, 25cm from beam pipe]]==
  
Quartz density<math>=2.32\frac{g}{cm^{3}}</math>
+
==[[25mA, 100ns pulse width, 50cm from beam pipe]]==
  
Mass of Quartz used in simulation: <math>(\pi(1.27)^{2}*(2.54))*(2.32)=29.8593g</math>
 
  
Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes <math>4.71875*10^{11} MeV</math>
+
----
 
 
Converting to Joules for dose calculation: <math>4.71875*10^{11} MeV=0.0756027J</math>
 
 
 
Average dose per pulse <math>\frac{0.0756027\ J}{29.8593*10^{-3}\ Kg}=2.53196\ Gy=253.196\ rad</math>
 
 
 
==25mA, 100ns pulse width, 25cm from beam pipe==
 
 
 
Cut current by a factor of 4. 100mA->25mA
 
 
 
Assuming <math>25\frac{mA}{pulse}</math> and a pulse width of <math>100ns</math>
 
 
 
Then <math>25\frac{mA}{pulse}=25\frac{mC}{s*pulse}=0.025\frac{C}{s*pulse}</math>
 
 
 
<math>0.025\frac{C}{s*pulse}(100ns)=2.5*10^{-9}\frac{C}{pulse}</math>
 
 
 
<math>2.5*10^{-9}\frac{C}{pulse}*\frac{1\ e-}{1.602*10^{-19}}=1.56055*10^{10}\frac{e-}{pulse}</math>
 
 
 
Using a distance of 25cm for all simulations following.
 
 
 
===OSL===
 
 
 
<math>\frac{1}{1000}</math> of a pulse. ~15mil e- simulated, ~15bil e- per pulse. With beam parameters given above.
 
 
 
Deposited Energy: <math>1.11636*10^{6} MeV</math>
 
 
 
OSL geometry: 0.501cm diameter cylinder of 0.03cm thickness with beam incident on flat face.
 
 
 
OSL Crystal density<math>=3.9698\frac{g}{cm^{3}}</math>
 
 
 
Mass of a single OSL crystal: <math>(\pi(0.2505)^{2}*(0.03))*(3.9698)=0.0234777g</math>
 
 
 
Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes <math>1.11636*10^{9} MeV</math>
 
 
 
Converting to Joules for dose calculation: <math>1.11636*10^{9} MeV=1.78841*10^{-4}J</math>
 
 
 
Average dose per pulse <math>\frac{1.78841*10^{-4}J}{0.0234777*10^{-3}\ Kg}=7.61748\ Gy=761.748\ rad</math>
 
 
 
===Quartz===
 
 
 
<math>\frac{1}{1000}</math> of a pulse. ~15mil e- simulated, ~15bil e- per pulse. With beam parameters given above.
 
 
 
Deposited Energy: <math>9.82027*10^{7} MeV</math>
 
 
 
Quartz Geometry: 1 inch diameter, 0.5 inch tall cylinder with electrons incident upon the base of the cylinder.
 
 
 
Quartz density<math>=2.32\frac{g}{cm^{3}}</math>
 
 
 
Mass of Quartz used in simulation: <math>(\pi(1.27)^{2}*(1.27))*(2.32)=14.9296g</math>
 
 
 
Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes <math>9.82027*10^{10} MeV</math>
 
 
 
Converting to Joules for dose calculation: <math>9.82027*10^{10} MeV=0.0157321J</math>
 
 
 
Average dose per pulse <math>\frac{0.0157321\ J}{14.9296*10^{-3}\ Kg}=1.05375\ Gy=105.375\ rad</math>
 
  
==25mA, 100ns pulse width, 50cm from beam pipe==
+
Low Dose Line: Dose = (0.11 +/- 0.01)(PMT Counts) + (119.29 +/- 29.08)
  
Changed distance from end of beam pipe from 25cm to 50cm.  
+
High Dose Line: Dose = (1.54 +/- 0.06)(PMT Counts) + (1004.80 +/- 1006.24)
  
Cut current by a factor of 4. 100mA->25mA
 
  
Assuming <math>25\frac{mA}{pulse}</math> and a pulse width of <math>100ns</math>
+
Peak Current: <math>50\frac{mA}{pulse}</math>  
  
Then <math>25\frac{mA}{pulse}=25\frac{mC}{s*pulse}=0.025\frac{C}{s*pulse}</math>
+
Pulse Width: <math>500ns</math>
  
<math>0.025\frac{C}{s*pulse}(100ns)=2.5*10^{-9}\frac{C}{pulse}</math>
 
  
<math>2.5*10^{-9}\frac{C}{pulse}*\frac{1\ e-}{1.602*10^{-19}}=1.56055*10^{10}\frac{e-}{pulse}</math>
+
<math>50\frac{mA}{pulse}=50\frac{mC}{s*pulse}=0.050\frac{C}{s*pulse}</math>
  
===OSL===
+
<math>0.050\frac{C}{s*pulse}(500ns)=2.5*10^{-8}\frac{C}{pulse}</math>
  
<math>\frac{1}{1000}</math> of a pulse. ~15mil e- simulated, ~15bil e- per pulse. With beam parameters given above.
+
<math>2.5*10^{-8}\frac{C}{pulse}*\frac{1\ e-}{1.602*10^{-19}}=1.56055*10^{11}\frac{e-}{pulse}</math>
  
Deposited Energy: <math>9.29701*10^{5} MeV</math>
 
 
OSL geometry: 0.501cm diameter cylinder of 0.03cm thickness with beam incident on flat face.
 
 
OSL Crystal density<math>=3.9698\frac{g}{cm^{3}}</math>
 
 
Mass of a single OSL crystal: <math>(\pi(0.2505)^{2}*(0.03))*(3.9698)=0.0234777g</math>
 
 
Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes <math>9.29701*10^{8} MeV</math>
 
 
Converting to Joules for dose calculation: <math>9.29701*10^{8} MeV=1.48938*10^{-4}J</math>
 
 
Average dose per pulse: <math>\frac{1.48938*10^{-4}J}{0.0234777*10^{-3}\ Kg}=6.34381\ Gy=634.381\ rad</math>
 
 
===Quartz===
 
 
<math>\frac{1}{1000}</math> of a pulse. ~15mil e- simulated, ~15bil e- per pulse. With beam parameters given above.
 
 
Deposited Energy: <math>9.21601*10^{7} MeV</math>
 
 
Quartz Geometry: 1 inch diameter, 0.5 inch tall cylinder with electrons incident upon the base of the cylinder.
 
 
Quartz density<math>=2.32\frac{g}{cm^{3}}</math>
 
 
Mass of Quartz used in simulation: <math>(\pi(1.27)^{2}*(1.27))*(2.32)=14.9296g</math>
 
 
Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes <math>9.21601*10^{10} MeV</math>
 
 
Converting to Joules for dose calculation: <math>9.21601*10^{10} MeV=0.0147657J</math>
 
 
Average dose per pulse <math>\frac{0.0147657\ J}{14.9296*10^{-3}\ Kg}=0.98902\ Gy=98.902\ rad</math>
 
 
==25mA, 100ns pulse width, 50cm from beam pipe, tungsten target with aluminum beamstop==
 
 
Added .254cm of Tungsten and 2.286cm of Aluminum to be used as converter and beam stop.
 
 
[[File:Radiator.png]]
 
 
Assuming <math>25\frac{mA}{pulse}</math> and a pulse width of <math>100ns</math>
 
 
Then <math>25\frac{mA}{pulse}=25\frac{mC}{s*pulse}=0.025\frac{C}{s*pulse}</math>
 
 
<math>0.025\frac{C}{s*pulse}(100ns)=2.5*10^{-9}\frac{C}{pulse}</math>
 
 
<math>2.5*10^{-9}\frac{C}{pulse}*\frac{1\ e-}{1.602*10^{-19}}=1.56055*10^{10}\frac{e-}{pulse}</math>
 
 
===OSL (8MeV)===
 
 
<math>\frac{1}{1000}</math> of a pulse. ~15mil e- simulated, ~15bil e- per pulse. With beam parameters given above.
 
 
Deposited Energy: <math>19.1759 MeV</math>
 
 
OSL geometry: 0.501cm diameter cylinder of 0.03cm thickness with beam incident on flat face.
 
 
OSL Crystal density<math>=3.9698\frac{g}{cm^{3}}</math>
 
 
Mass of a single OSL crystal: <math>(\pi(0.2505)^{2}*(0.03))*(3.9698)=0.0234777g</math>
 
 
Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes <math>9.29701*10^{8} MeV</math>
 
 
Converting to Joules for dose calculation: <math>19.1759*10^{3} MeV=3.0723177*10^{-9}J</math>
 
 
Average dose per pulse: <math>\frac{3.0723177*10^{-9}J}{0.0234777*10^{-3}\ Kg}=0.000130861\ Gy=0.0130861\ rad</math>
 
  
  
Line 200: Line 154:
 
----
 
----
 
[[Thesis]]
 
[[Thesis]]
 +
 +
[[May 31st 2018 - 25b 0 degree port]]

Latest revision as of 01:41, 27 June 2018

Beam Line info

Machine: 25b Linac

0[math]°[/math] port

Beam Energy: 8 MeV

Rep Rate: Max (150Hz?)

Pulse Width: 100ns

Run Plan

To find operating point

- Will use 15 OSLs from reproducibility study to make sure that dose is within acceptable range

Table

Start at 7am

Shot # Number of Pulses Number of OSLs Beam Current Dose/pulse Expected Dose/pulse
1 80 1 50 mA
2 1 mA
3 1 mA
4 1 mA
5 1 mA
6 1 mA
7 1 mA
8 1 mA
9 1 mA
10 1 mA
11 1 mA
12 1 mA
13 1 mA
14 1 mA
15 1 mA

Experiment

85 Nanodot OSLs for use (dose not include OSLs from reproducibility study)

- upper limit of OSLs is 15Gy, want to be around 7.5Gy with multiple pulses

Will talk to engineers about double pulsing and guaranteeing number of pulses and update.

Table

Shot # Number of Pulses Number of OSLs Beam Current Aluminum Brick Dose/Pulse Expected Dose/Pulse
1 1 mA Out
2 1 mA Out
3 1 mA Out
4 1 mA Out
5 1 mA Out
6 1 mA Out
7 16 mA In
8 16 mA In
9 16 mA Out
10 16 mA Out
11 16 mA Out

Absorbed Dose Information

Titanium window = 0.5mm thick. Radius = 23.813mm

Air gap between Titanium window and glass slide = 45mm

Glass slide Thickness = 1mm

5mA, 100ns pulse width, 100cm from beam pipe with Titanium window

25mA, 100ns pulse width, 100cm from beam pipe, with Titanium window

10mA, 100ns pulse width, 100cm from beam pipe, with Titanium window

100mA, 100ns pulse width, 100cm from beam pipe, with Titanium window

25mA, 100ns pulse width, 50cm from beam pipe, tungsten target with aluminum beamstop


100mA, 100ns pulse width, 25cm from beam pipe

25mA, 100ns pulse width, 25cm from beam pipe

25mA, 100ns pulse width, 50cm from beam pipe


Low Dose Line: Dose = (0.11 +/- 0.01)(PMT Counts) + (119.29 +/- 29.08)

High Dose Line: Dose = (1.54 +/- 0.06)(PMT Counts) + (1004.80 +/- 1006.24)


Peak Current: [math]50\frac{mA}{pulse}[/math]

Pulse Width: [math]500ns[/math]


[math]50\frac{mA}{pulse}=50\frac{mC}{s*pulse}=0.050\frac{C}{s*pulse}[/math]

[math]0.050\frac{C}{s*pulse}(500ns)=2.5*10^{-8}\frac{C}{pulse}[/math]

[math]2.5*10^{-8}\frac{C}{pulse}*\frac{1\ e-}{1.602*10^{-19}}=1.56055*10^{11}\frac{e-}{pulse}[/math]




Thesis

May 31st 2018 - 25b 0 degree port