Difference between revisions of "Absorbed Dose Information"

From New IAC Wiki
Jump to navigation Jump to search
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
<math>D \equiv  \lim_{_{_{ \! \!\! \! \! \! \! &Delta; m \rightarrow 0}}}{\frac{&Delta; \bar &epsilon;}{&Delta; m}}</math>
 
<math>D \equiv  \lim_{_{_{ \! \!\! \! \! \! \! &Delta; m \rightarrow 0}}}{\frac{&Delta; \bar &epsilon;}{&Delta; m}}</math>
  
Here <math>\bar &epsilon;</math> is the expected energy imparted to the medium averaged over all stochastic fluctuations (random processes)
+
"The absorbed dose is the quotient of the mean energy imparted <math>\bar &epsilon;</math> to matter of mass <math>&Delta; m</math>, in the limit as the mass approaches zero."
 +
 
 +
"Here <math>\bar &epsilon;</math> is the expected energy imparted to the medium averaged over all stochastic fluctuations"
 +
 
 +
Stochastic fluctuations -> (random processes)
  
 
<math> 1 rad = 100 \frac{ergs}{gram} = 0.01 Gy</math>
 
<math> 1 rad = 100 \frac{ergs}{gram} = 0.01 Gy</math>
 +
 +
<math> 1 Gy = 1 \frac{joule}{kilogram}</math>
  
  
  
 
- Shultis, Faw, Fundamentals of Nuclear Science and Engineering, 3rd Edition, pg 274.
 
- Shultis, Faw, Fundamentals of Nuclear Science and Engineering, 3rd Edition, pg 274.
 +
 +
 +
 +
 +
 +
 
----
 
----
 
[[Thesis]]
 
[[Thesis]]
 +
 +
[[Linac Run Plan April 2018, Dr. McNulty]]

Latest revision as of 18:01, 16 April 2018

[math]D \equiv \lim_{_{_{ \! \!\! \! \! \! \! Δ m \rightarrow 0}}}{\frac{Δ \bar ε}{Δ m}}[/math]

"The absorbed dose is the quotient of the mean energy imparted [math]\bar ε[/math] to matter of mass [math]Δ m[/math], in the limit as the mass approaches zero."

"Here [math]\bar ε[/math] is the expected energy imparted to the medium averaged over all stochastic fluctuations"

Stochastic fluctuations -> (random processes)

[math] 1 rad = 100 \frac{ergs}{gram} = 0.01 Gy[/math]

[math] 1 Gy = 1 \frac{joule}{kilogram}[/math]


- Shultis, Faw, Fundamentals of Nuclear Science and Engineering, 3rd Edition, pg 274.





Thesis

Linac Run Plan April 2018, Dr. McNulty