Difference between revisions of "Limit of Scattering Angle Theta in Lab Frame"
(Created page with "Theu quantity is known as the <center><math>u \equiv \left({\mathbf P_1^*}- {\mathbf P_2^{'*}}\right)^2=\left({\mathbf P_2^{*}}- {\mathbf P_1^{'*}}\right)^2</math></center>...") |
|||
(39 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | ||
+ | <center><math> \underline{\textbf{Navigation} }</math> | ||
+ | |||
+ | [[Uniform_distribution_in_Energy_and_Theta_LUND_files|<math>\vartriangleleft </math>]] | ||
+ | [[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]] | ||
+ | [[Relativistic_Units|<math>\vartriangleright </math>]] | ||
+ | |||
+ | </center> | ||
+ | |||
+ | The quantity u does not have a simple physical relationship, but is related to the t channel with the roles of the outgoing particles switched. | ||
<center><math>u \equiv \left({\mathbf P_1^*}- {\mathbf P_2^{'*}}\right)^2=\left({\mathbf P_2^{*}}- {\mathbf P_1^{'*}}\right)^2</math></center> | <center><math>u \equiv \left({\mathbf P_1^*}- {\mathbf P_2^{'*}}\right)^2=\left({\mathbf P_2^{*}}- {\mathbf P_1^{'*}}\right)^2</math></center> | ||
Line 5: | Line 14: | ||
=In the CM Frame= | =In the CM Frame= | ||
+ | |||
+ | <center><math>{\mathbf P_1^{*}}=-{\mathbf P_2^{*}}</math></center> | ||
+ | |||
+ | |||
+ | <center><math>{\mathbf P_1^{'*}}=-{\mathbf P_2^{'*}}</math></center> | ||
+ | |||
+ | |||
+ | <center><math>E_1^{*}=E_1^{'*}=E_2^{*}=E_2^{'*}</math></center> | ||
+ | |||
+ | |||
+ | <center><math>\left | \vec p_1^* \right |=\left | \vec p_1^{'*} \right |=\left | \vec p_2^* \right |=\left | \vec p_2^{'*} \right |</math></center> | ||
+ | |||
+ | |||
+ | <center><math>u =\left({\mathbf P_1^*}- {\mathbf P_2^{'*}}\right)^2=\left({\mathbf P_2^{*}}- {\mathbf P_1^{'*}}\right)^2</math></center> | ||
+ | |||
+ | |||
+ | <center><math>u={\mathbf P_1^{*2}}+ {\mathbf P_2^{'*2}}-2 {\mathbf P_1^*} {\mathbf P_2^{'*}}={\mathbf P_2^{*2}}+ {\mathbf P_1^{'*2}}-2 {\mathbf P_2^*} {\mathbf P_1^{'*}}</math></center> | ||
+ | |||
+ | |||
+ | <center><math>u=2m^2-2E_1^*E_2^{'*}+2 \vec p_1^* \vec p_2^{'*}=2m^2-2E_2^*E_1^{'*}+2 p_2^* p_1^{'*}</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>u=2m^2-2E_1^{*2}+2 \left | p_1^{*2}\right | \cos \theta_{1^*\ 2^{'*}}=2m^2-2E_2^{*2}+2 \left | p_2^{*2}\right | \cos \theta_{2^*\ 1^{'*}}</math></center> | ||
+ | |||
+ | |||
+ | where <math>\theta_{1^*\ 2^{'*}}</math> and <math>\theta_{2^*\ 1^{'*}}</math>is the angle between the before and after momentum in the CM frame | ||
+ | |||
+ | Using the relativistic relation <math>E^2=m^2+p^2</math> this reduces to | ||
+ | |||
+ | |||
+ | <center><math>u=-2p_1^{*2}+2 \left | p_1^{*2}\right | \cos \theta_{1^*\ 2^{'*}}=-2p_2^{*2}+2 \left | p_2^{*2}\right | \cos \theta_{2^*\ 1^{'*}}</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>u=-2p_1^{*2}(1- \cos \theta_{1^*\ 2^{'*}})=-2p_2^{*2}(1-\cos \theta_{2^*\ 1^{'*}})</math></center> | ||
+ | |||
+ | ==<math>\theta \approx 180^{\circ}</math>== | ||
+ | |||
+ | There is no scattering, or no momentum transfer at 180 degrees since the incident momentum direction is the same as the scattered momentum direction for the CM frame Moller electron. However, at a certain angle enough momentum must be transferred to provide the ionization energy to create a Moller electron. | ||
+ | |||
+ | ==<math>\theta=90^{\circ}</math>== | ||
+ | For <math>\theta_{1^*1^{'*}}=90^{\circ}</math>, by symmetry this implies <math>\theta_{1^*2^{'*}}=270^{\circ}</math> | ||
+ | |||
+ | |||
+ | <center><math>u=-2p_1^{*2}</math></center> | ||
+ | |||
+ | |||
+ | This can be rewritten again using the relativistic energy relation <math>E^2=m^2+p^2</math> | ||
+ | |||
+ | |||
+ | <center><math>u=2(m^{2}-E_1^{*2})=2(m^{2}-E_2^{*2})</math></center> | ||
=In the Lab Frame= | =In the Lab Frame= | ||
− | <center><math> | + | <center><math>u={\mathbf P_1^{2}}+ {\mathbf P_2^{'2}}-2 {\mathbf P_1} {\mathbf P_2^{'}}={\mathbf P_2^{2}}+ {\mathbf P_1^{'2}}-2 {\mathbf P_2} {\mathbf P_1^{'}}</math></center> |
+ | |||
+ | |||
+ | |||
+ | <center><math>u=2m^2-2E_1E_2^{'}+2 \vec p_1 \vec p_2^{'}=2m^2-2E_2E_1^{'}+2 p_2 p_1^{'}</math></center> | ||
+ | |||
+ | with <math>p_2=0</math> | ||
+ | |||
+ | and <math>E_2=m</math> | ||
+ | |||
+ | <center><math>u=2m^2-2E_1E_2^{'}+2 \vec p_1 \vec p_2^{'}=2m^2-2mE_1^{'}</math></center> | ||
+ | |||
+ | |||
+ | <center><math>u=2m^2-2E_1E_2^{'}+2 \left | p_1 \right | \left | p_2^{'} \right | \cos \theta_{1\ 2^{'}}=2m^2-2mE_1^{'}</math></center> | ||
+ | |||
+ | =Minimum Moller Scattering Angle Theta in Lab Frame= | ||
+ | |||
+ | Since u is invariant between frames | ||
+ | |||
+ | |||
+ | <center><math>u=2m^2-2E_1E_2^{'}+2 \left | p_1 \right | \left | p_2^{'} \right | \cos \theta_{1\ 2^{'}}=2(m^2-E_2^{*2})</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | with<math> E_2^{*} \approx 53\ MeV</math> for <math>E_1=11000\ MeV</math> | ||
+ | |||
+ | |||
+ | As found earlier, the Moller electron has a maximum energy possible of: | ||
+ | <center><math>E_2^{'}=5500\ MeV</math></center> | ||
+ | |||
+ | |||
+ | Using the relativistic energy relation, <math>E^2=m^2+p^2</math> | ||
+ | |||
+ | <center><math>p=\sqrt {E^2-m^2} \rightarrow p \approx E</math> for <math>E \gg m</math></center> | ||
+ | |||
+ | |||
+ | <center><math>\therefore p_2^{'} \approx E_2^{'}</math></center> | ||
+ | |||
+ | |||
+ | Rewriting the expression relating the terms | ||
+ | |||
+ | <center><math>u=2m^2-2E_1E_2^{'}+2 \left | p_1 \right | \left | p_2^{'} \right | \cos \theta_{1\ 2^{'}}=2(m^2-E_2^{*2})</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>u=2m^2-2(11000\ MeV)(5500\ MeV) +2(11000\ MeV)(5500\ MeV) \cos \theta_{1\ 2^{'}}=2(m^2-(53\ MeV)^{2})</math></center> | ||
+ | |||
+ | |||
+ | Solving for the angle theta | ||
+ | |||
+ | |||
+ | <center><math>2m^2-2(11000\ MeV)(5500\ MeV) +2(11000\ MeV)(5500\ MeV) \cos \theta_{1\ 2^{'}}=2(m^2-(53\ MeV)^{2})</math></center> | ||
+ | |||
+ | |||
+ | <center><math>(11000\ MeV)(5500\ MeV)(1 - \cos \theta_{1\ 2^{'}})=(53\ MeV)^{2}</math></center> | ||
+ | |||
+ | |||
+ | <center><math>(1 - \cos \theta_{1\ 2^{'}})=\frac{(53\ MeV)^{*2}}{(11000\ MeV)(5500\ MeV)}</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>1 - \cos \theta_{1\ 2^{'}}=4.64297520661\times 10^{-5}</math></center> | ||
+ | |||
+ | |||
+ | <center><math>\cos \theta_{1\ 2^{'}}=1-4.64297520661\times 10^{-5}</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>\theta_{1\ 2^{'}}=\arccos .999953570248</math></center> | ||
+ | |||
+ | |||
+ | <center><math>\theta_{1\ 2^{'}}=.009636400914\ radians=.55^{\circ}</math></center> | ||
+ | |||
+ | The Moller electron is traveling near, but not on the beamline. | ||
+ | |||
+ | =Maximum Moller Scattering Angle Theta in Lab Frame= | ||
+ | |||
+ | Since u is invariant between frames | ||
+ | |||
+ | |||
+ | <center><math>u=2m^2-2E_1^*E_2^{'*}+2 \left | p_1^* \right | \left | p_2^{'*} \right | \cos \theta_{1\ 2^{'}}=2m^2-2E_1E_2^{'}+2 \left | p_1 \right | \left | p_2^{'} \right | \cos \theta_{1\ 2^{'}}</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>u=-2p_1^* p_2^{'*}+2 \left | p_1^* \right | \left | p_2^{'*} \right | \cos \theta_{1\ 2^{'}}=2m^2-2E_1E_2^{'}+2 \left | p_1 \right | \left | p_2^{'} \right | \cos \theta_{1\ 2^{'}}</math></center> | ||
+ | |||
+ | |||
+ | At 180 | ||
+ | |||
+ | <center><math>u=-4p_1^* p_2^{'*}=2m^2-2E_1E_2^{'}+2 \left | p_1 \right | \left | p_2^{'} \right | \cos \theta_{1\ 2^{'}}</math></center> | ||
+ | |||
+ | |||
+ | <center><math>u=-2p_1^* p_2^{'*}=m^2-E_1E_2^{'}+\left | p_1 \right | \left | p_2^{'} \right | \cos \theta_{1\ 2^{'}}</math></center> | ||
+ | |||
+ | |||
+ | ---- | ||
+ | |||
+ | |||
+ | <center><math> \underline{\textbf{Navigation} }</math> | ||
+ | |||
+ | [[Uniform_distribution_in_Energy_and_Theta_LUND_files|<math>\vartriangleleft </math>]] | ||
+ | [[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]] | ||
+ | [[Relativistic_Units|<math>\vartriangleright </math>]] | ||
+ | |||
+ | </center> |
Latest revision as of 17:52, 29 December 2018
The quantity u does not have a simple physical relationship, but is related to the t channel with the roles of the outgoing particles switched.
In the CM Frame
where and is the angle between the before and after momentum in the CM frame
Using the relativistic relation
this reduces to
There is no scattering, or no momentum transfer at 180 degrees since the incident momentum direction is the same as the scattered momentum direction for the CM frame Moller electron. However, at a certain angle enough momentum must be transferred to provide the ionization energy to create a Moller electron.
For
, by symmetry this implies
This can be rewritten again using the relativistic energy relation
In the Lab Frame
with
and
Minimum Moller Scattering Angle Theta in Lab Frame
Since u is invariant between frames
with
for
As found earlier, the Moller electron has a maximum energy possible of:
Using the relativistic energy relation,
Rewriting the expression relating the terms
Solving for the angle theta
The Moller electron is traveling near, but not on the beamline.
Maximum Moller Scattering Angle Theta in Lab Frame
Since u is invariant between frames
At 180