Difference between revisions of "4-gradient"

From New IAC Wiki
Jump to navigation Jump to search
 
Line 1: Line 1:
<center><math>\textbf{\underline{Navigation}}</math>
+
<center><math>\underline{\textbf{Navigation}}</math>
  
 
[[Frame_of_Reference_Transformation|<math>\vartriangleleft </math>]]
 
[[Frame_of_Reference_Transformation|<math>\vartriangleleft </math>]]
Line 91: Line 91:
  
  
<center><math>\textbf{\underline{Navigation}}</math>
+
<center><math>\underline{\textbf{Navigation}}</math>
  
 
[[Frame_of_Reference_Transformation|<math>\vartriangleleft </math>]]
 
[[Frame_of_Reference_Transformation|<math>\vartriangleleft </math>]]

Latest revision as of 18:47, 15 May 2018

Navigation_

4-gradient

From the use of the Minkowski metric, converting between contravariant and covariant


xμημμxμ


Where we have already defined the covariant term,

xμ=[x0x1x2x3]

and the contravariant term

xμ=[x0x1x2x3]


From quantum mechanics we know that partial differential is a linear operator. Following the rules of matrix multiplication this implies that the derivative with respect to a contravariant coordinate transforms as a covariant 4-vector, and the derivative with respect to a covariant coordinate transforms as a contravariant vector.

μ=xμ


μ[x0x1x2x3]=[txyz]=[t]


μ=xμ


μ[x0x1x2x3]=[txyz]=[t]


Since it is an operator, the dot product of two partial differentials yields an operator known as the D'Alembert operator.

μμ=[x0x1x2x3][x0x1x2x3]=2t22


Navigation_