Difference between revisions of "4-gradient"

From New IAC Wiki
Jump to navigation Jump to search
 
(8 intermediate revisions by the same user not shown)
Line 1: Line 1:
<center><math>\textbf{\underline{Navigation}}</math>
+
<center><math>\underline{\textbf{Navigation}}</math>
  
 
[[Frame_of_Reference_Transformation|<math>\vartriangleleft </math>]]
 
[[Frame_of_Reference_Transformation|<math>\vartriangleleft </math>]]
Line 32: Line 32:
  
  
Following the rules of matrix multiplication this implies that the derivative with respect to a contravariant coordinate transforms as a covariant 4-vector, and the derivative with respect to a covariant coordinate transforms as a contravariant vector.
+
From quantum mechanics we know that partial differential is a linear operator.  Following the rules of matrix multiplication this implies that the derivative with respect to a contravariant coordinate transforms as a covariant 4-vector, and the derivative with respect to a covariant coordinate transforms as a contravariant vector.
  
 
<center><math>\partial_{\mu}=\frac{\partial}{\partial x^{\mu}}</math></center>
 
<center><math>\partial_{\mu}=\frac{\partial}{\partial x^{\mu}}</math></center>
Line 38: Line 38:
  
  
<center><math>\mathbf \partial_\mu \equiv \Biggl [\frac{\partial}{\partial x^0}\quad -\frac{\partial}{\partial x^1}\quad -\frac{\partial}{\partial x^2}\quad -\frac{\partial}{\partial x^3}\Biggr ]=\Biggl [ \frac{\partial}{\partial t}\quad -\frac{\partial}{\partial x}\quad -\frac{\partial}{\partial y}\quad -\frac{\partial}{\partial z}\Biggr ]</math></center>
+
<center><math>\mathbf \partial_\mu \equiv \Biggl [\frac{\partial}{\partial x^0}\quad -\frac{\partial}{\partial x^1}\quad -\frac{\partial}{\partial x^2}\quad -\frac{\partial}{\partial x^3}\Biggr ]=\Biggl [ \frac{\partial}{\partial t}\quad -\frac{\partial}{\partial x}\quad -\frac{\partial}{\partial y}\quad -\frac{\partial}{\partial z}\Biggr ]=\Biggl [\frac{\partial}{\partial t}\quad -\nabla \Biggr ]</math></center>
  
  
Line 45: Line 45:
  
  
<center><math>\mathbf \partial^\mu \equiv \mathbf{x^{\mu}}=
+
<center><math>\mathbf \partial^\mu \equiv  
 
\begin{bmatrix}
 
\begin{bmatrix}
 
\frac{\partial}{\partial x_0}  \\
 
\frac{\partial}{\partial x_0}  \\
 +
\\
 
\frac{\partial}{\partial x_1}  \\
 
\frac{\partial}{\partial x_1}  \\
 +
\\
 
\frac{\partial}{\partial x_2}  \\
 
\frac{\partial}{\partial x_2}  \\
 +
\\
 
\frac{\partial}{\partial x_3}  
 
\frac{\partial}{\partial x_3}  
 +
\end{bmatrix}=
 +
\begin{bmatrix}
 +
\frac{\partial}{\partial t}  \\
 +
\\
 +
\frac{\partial}{\partial x}  \\
 +
\\
 +
\frac{\partial}{\partial y}  \\
 +
\\
 +
\frac{\partial}{\partial z}
 +
\end{bmatrix}=
 +
\begin{bmatrix}
 +
\frac{\partial}{\partial t} \\
 +
\nabla
 
\end{bmatrix}
 
\end{bmatrix}
 
</math></center>
 
</math></center>
  
  
 +
 +
Since it is an operator, the dot product of two partial differentials yields an operator known as the D'Alembert operator.
 +
 +
<center><math>\partial^{\mu} \partial_{\mu}=
 +
\Biggl [\frac{\partial}{\partial x^0}\quad -\frac{\partial}{\partial x^1}\quad -\frac{\partial}{\partial x^2}\quad -\frac{\partial}{\partial x^3}\Biggr ]\cdot
 +
\begin{bmatrix}
 +
\frac{\partial}{\partial x_0}  \\
 +
\\
 +
\frac{\partial}{\partial x_1}  \\
 +
\\
 +
\frac{\partial}{\partial x_2}  \\
 +
\\
 +
\frac{\partial}{\partial x_3}
 +
\end{bmatrix}=
 +
\frac{\partial^2}{\partial t^2}-\nabla^2\equiv \Box
 +
</math></center>
 
----
 
----
  
  
  
<center><math>\textbf{\underline{Navigation}}</math>
+
<center><math>\underline{\textbf{Navigation}}</math>
  
 
[[Frame_of_Reference_Transformation|<math>\vartriangleleft </math>]]
 
[[Frame_of_Reference_Transformation|<math>\vartriangleleft </math>]]

Latest revision as of 18:47, 15 May 2018

Navigation_

4-gradient

From the use of the Minkowski metric, converting between contravariant and covariant


xμημμxμ


Where we have already defined the covariant term,

xμ=[x0x1x2x3]

and the contravariant term

xμ=[x0x1x2x3]


From quantum mechanics we know that partial differential is a linear operator. Following the rules of matrix multiplication this implies that the derivative with respect to a contravariant coordinate transforms as a covariant 4-vector, and the derivative with respect to a covariant coordinate transforms as a contravariant vector.

μ=xμ


μ[x0x1x2x3]=[txyz]=[t]


μ=xμ


μ[x0x1x2x3]=[txyz]=[t]


Since it is an operator, the dot product of two partial differentials yields an operator known as the D'Alembert operator.

μμ=[x0x1x2x3][x0x1x2x3]=2t22


Navigation_