Difference between revisions of "Frame of Reference Transformation"
Jump to navigation
Jump to search
Where
Where
is the Lorentz transformation matrix for motion in the z direction.
Where
(Created page with "Using the Lorentz transformations and the index notation, <center><math> \begin{cases} t'=\gamma (t-vz/c^2) \\ x'=x' \\ y'=y' \\ z'=\gamma (z-vt) \end{cases} </math></center>…") |
|||
(14 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | <center><math>\underline{\textbf{Navigation}}</math> | ||
+ | |||
+ | [[4-momenta|<math>\vartriangleleft </math>]] | ||
+ | [[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]] | ||
+ | [[4-gradient|<math>\vartriangleright </math>]] | ||
+ | |||
+ | </center> | ||
+ | |||
+ | =Frame of Reference Transformation= | ||
Using the Lorentz transformations and the index notation, | Using the Lorentz transformations and the index notation, | ||
Line 67: | Line 76: | ||
<center>Where <math>\Lambda</math> is the Lorentz transformation matrix for motion in the z direction.</center> | <center>Where <math>\Lambda</math> is the Lorentz transformation matrix for motion in the z direction.</center> | ||
+ | |||
+ | |||
+ | Using the Einstein convention, this can be written as | ||
+ | |||
+ | <center><math>\mathbf x'^{\mu}= \Lambda_{\nu}^{\mu} \mathbf x^{\nu}</math></center> | ||
+ | |||
+ | If we take the 4-vector quantities to be on an infinitesimally small scale, then there exists a linear relationship between the transformation. Following the rules of partial differentiation, | ||
+ | |||
+ | |||
+ | <center><math>dt^{'} \equiv \frac{\partial t'}{\partial t} dt+\frac{\partial t'}{\partial x} dx + \frac{\partial t'}{\partial y} dy+ \frac{\partial t'}{\partial z} dz \Rightarrow dx^{'0} \equiv \frac{\partial x^{'0}}{\partial x^{0}} dx^{0}+\frac{\partial x^{'0}}{\partial x^{1}} dx^{1} + \frac{\partial x^{'0}}{\partial x^{2}} dx^{2}+ \frac{\partial x^{'0}}{\partial x^{3}} dx^{3}</math></center> | ||
+ | |||
+ | |||
+ | <center><math>dx^{'} \equiv \frac{\partial t'}{\partial t} dt+\frac{\partial x'}{\partial x} dx + \frac{\partial x'}{\partial y} dy+ \frac{\partial x'}{\partial z} dz\Rightarrow dx^{'1} \equiv \frac{\partial x^{'1}}{\partial x^{0}} dx^{0}+\frac{\partial x^{'1}}{\partial x^{1}} dx^{1} + \frac{\partial x^{'1}}{\partial x^{2}} dx^{2}+ \frac{\partial x^{'1}}{\partial x^{3}} dx^{3}</math></center> | ||
+ | |||
+ | |||
+ | <center><math>dy^{'} \equiv \frac{\partial y'}{\partial t} dt+\frac{\partial y'}{\partial x} dx + \frac{\partial y'}{\partial y} dy+ \frac{\partial y'}{\partial z} dz\Rightarrow dx^{'2} \equiv \frac{\partial x^{'2}}{\partial x^{0}} dx^{0}+\frac{\partial x^{'2}}{\partial x^{1}} dx^{1} + \frac{\partial x^{'2}}{\partial x^{2}} dx^{2}+ \frac{\partial x^{'2}}{\partial x^{3}} dx^{3}</math></center> | ||
+ | |||
+ | |||
+ | <center><math>dz^{'} \equiv \frac{\partial z'}{\partial t} dt+\frac{\partial z'}{\partial x} dx + \frac{\partial z'}{\partial y} dy+ \frac{\partial z'}{\partial z} dz\Rightarrow dx^{'3} \equiv \frac{\partial x^{'3}}{\partial x^{0}} dx^{0}+\frac{\partial x^{'3}}{\partial x^{1}} dx^{1} + \frac{\partial x^{'3}}{\partial x^{2}} dx^{2}+ \frac{\partial x^{'3}}{\partial x^{3}} dx^{3}</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | Expressing this in matrix form | ||
+ | |||
+ | <center><math>\begin{bmatrix} | ||
+ | dx'^0 \\ | ||
+ | \\ | ||
+ | dx'^1 \\ | ||
+ | \\ | ||
+ | dx'^2\\ | ||
+ | \\ | ||
+ | dx'^3 | ||
+ | \end{bmatrix}= | ||
+ | \begin{bmatrix} | ||
+ | \frac{\partial x^{'0}}{\partial x^0} & \frac{\partial x^{'0}}{\partial x^1} & \frac{\partial x^{'0}}{\partial x^2} & \frac{\partial x^{'0}}{\partial x^3} \\ | ||
+ | \\ | ||
+ | \frac{\partial x^{'1}}{\partial x^0} & \frac{\partial x^{'1}}{\partial x^1} & \frac{\partial x^{'1}}{\partial x^2} & \frac{\partial x^{'1}}{\partial x^3} \\ | ||
+ | \\ | ||
+ | \frac{\partial x^{'2}}{\partial x^0} & \frac{\partial x^{'2}}{\partial x^1} & \frac{\partial x^{'2}}{\partial x^2} & \frac{\partial x^{'2}}{\partial x^3} \\ | ||
+ | \\ | ||
+ | \frac{\partial x^{'3}}{\partial x^0} & \frac{\partial x^{'3}}{\partial x^1} & \frac{\partial x^{'3}}{\partial x^2} & \frac{\partial x^{'3}}{\partial x^3} | ||
+ | \end{bmatrix} | ||
+ | \cdot | ||
+ | \begin{bmatrix} | ||
+ | dx^0 \\ | ||
+ | \\ | ||
+ | dx^1 \\ | ||
+ | \\ | ||
+ | dx^2 \\ | ||
+ | \\ | ||
+ | dx^3 | ||
+ | \end{bmatrix}</math></center> | ||
+ | |||
+ | |||
+ | Again, using a summation over the indicies | ||
+ | |||
+ | <center><math>d\mathbf x^{'\mu}=\sum_{\nu=0}^3 \frac{\partial x^{'\mu}}{\partial x^{\nu}}d\mathbf x^{\nu}</math></center> | ||
+ | |||
+ | |||
+ | Using the Einstein convention | ||
+ | |||
+ | <center><math>d\mathbf x^{'\mu}= \frac{\partial x^{'\mu}}{\partial x^{\nu}}d\mathbf x^{\nu}</math></center> | ||
Line 169: | Line 240: | ||
0 & 0 & 0 & -1 | 0 & 0 & 0 & -1 | ||
\end{bmatrix}</math></center> | \end{bmatrix}</math></center> | ||
+ | |||
+ | |||
+ | <center><math>\underline{\textbf{Navigation}}</math> | ||
+ | |||
+ | [[4-momenta|<math>\vartriangleleft </math>]] | ||
+ | [[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]] | ||
+ | [[4-gradient|<math>\vartriangleright </math>]] | ||
+ | |||
+ | </center> |
Latest revision as of 19:04, 1 January 2019
Frame of Reference Transformation
Using the Lorentz transformations and the index notation,
This can be expressed in matrix form as
Letting the indices run from 0 to 3, we can write
Using the Einstein convention, this can be written as
If we take the 4-vector quantities to be on an infinitesimally small scale, then there exists a linear relationship between the transformation. Following the rules of partial differentiation,
Expressing this in matrix form
Again, using a summation over the indicies
Using the Einstein convention
The Lorentz transformations are also invariant in that they are just a rotation, i.e. Det . The inner product is preserved,