Difference between revisions of "4-gradient"
Jump to navigation
Jump to search
(24 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | <center><math>\ | + | <center><math>\underline{\textbf{Navigation}}</math> |
+ | [[Frame_of_Reference_Transformation|<math>\vartriangleleft </math>]] | ||
+ | [[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]] | ||
+ | [[Mandelstam_Representation|<math>\vartriangleright </math>]] | ||
+ | </center> | ||
− | <center><math>\mathbf \partial_\mu \equiv \ | + | =4-gradient= |
+ | |||
+ | From the use of the Minkowski metric, converting between contravariant and covariant | ||
+ | |||
+ | |||
+ | <center><math>\mathbf x_{\mu} \equiv \eta_{\mu}^{\mu} \mathbf x^{\mu}</math></center> | ||
+ | |||
+ | |||
+ | Where we have already defined the covariant term, | ||
+ | <center><math>\mathbf{x_{\mu}}= \begin{bmatrix} | ||
+ | x_0 & -x_1 & -x_2 & -x_3 | ||
+ | \end{bmatrix}</math></center> | ||
+ | |||
+ | and the contravariant term | ||
+ | |||
+ | <center><math>\mathbf{x^{\mu}}= | ||
+ | \begin{bmatrix} | ||
+ | x^0 \\ | ||
+ | x^1 \\ | ||
+ | x^2 \\ | ||
+ | x^3 | ||
+ | \end{bmatrix} | ||
+ | </math></center> | ||
+ | |||
+ | |||
+ | From quantum mechanics we know that partial differential is a linear operator. Following the rules of matrix multiplication this implies that the derivative with respect to a contravariant coordinate transforms as a covariant 4-vector, and the derivative with respect to a covariant coordinate transforms as a contravariant vector. | ||
+ | |||
+ | <center><math>\partial_{\mu}=\frac{\partial}{\partial x^{\mu}}</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>\mathbf \partial_\mu \equiv \Biggl [\frac{\partial}{\partial x^0}\quad -\frac{\partial}{\partial x^1}\quad -\frac{\partial}{\partial x^2}\quad -\frac{\partial}{\partial x^3}\Biggr ]=\Biggl [ \frac{\partial}{\partial t}\quad -\frac{\partial}{\partial x}\quad -\frac{\partial}{\partial y}\quad -\frac{\partial}{\partial z}\Biggr ]=\Biggl [\frac{\partial}{\partial t}\quad -\nabla \Biggr ]</math></center> | ||
+ | |||
+ | |||
+ | <center><math>\partial^{\mu}=\frac{\partial}{\partial x_{\mu}}</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>\mathbf \partial^\mu \equiv | ||
+ | \begin{bmatrix} | ||
+ | \frac{\partial}{\partial x_0} \\ | ||
+ | \\ | ||
+ | \frac{\partial}{\partial x_1} \\ | ||
+ | \\ | ||
+ | \frac{\partial}{\partial x_2} \\ | ||
+ | \\ | ||
+ | \frac{\partial}{\partial x_3} | ||
+ | \end{bmatrix}= | ||
+ | \begin{bmatrix} | ||
+ | \frac{\partial}{\partial t} \\ | ||
+ | \\ | ||
+ | \frac{\partial}{\partial x} \\ | ||
+ | \\ | ||
+ | \frac{\partial}{\partial y} \\ | ||
+ | \\ | ||
+ | \frac{\partial}{\partial z} | ||
+ | \end{bmatrix}= | ||
+ | \begin{bmatrix} | ||
+ | \frac{\partial}{\partial t} \\ | ||
+ | \nabla | ||
+ | \end{bmatrix} | ||
+ | </math></center> | ||
+ | |||
+ | |||
+ | |||
+ | Since it is an operator, the dot product of two partial differentials yields an operator known as the D'Alembert operator. | ||
+ | |||
+ | <center><math>\partial^{\mu} \partial_{\mu}= | ||
+ | \Biggl [\frac{\partial}{\partial x^0}\quad -\frac{\partial}{\partial x^1}\quad -\frac{\partial}{\partial x^2}\quad -\frac{\partial}{\partial x^3}\Biggr ]\cdot | ||
+ | \begin{bmatrix} | ||
+ | \frac{\partial}{\partial x_0} \\ | ||
+ | \\ | ||
+ | \frac{\partial}{\partial x_1} \\ | ||
+ | \\ | ||
+ | \frac{\partial}{\partial x_2} \\ | ||
+ | \\ | ||
+ | \frac{\partial}{\partial x_3} | ||
+ | \end{bmatrix}= | ||
+ | \frac{\partial^2}{\partial t^2}-\nabla^2\equiv \Box | ||
+ | </math></center> | ||
+ | ---- | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>\underline{\textbf{Navigation}}</math> | ||
+ | |||
+ | [[Frame_of_Reference_Transformation|<math>\vartriangleleft </math>]] | ||
+ | [[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]] | ||
+ | [[Mandelstam_Representation|<math>\vartriangleright </math>]] | ||
+ | |||
+ | </center> |
Latest revision as of 18:47, 15 May 2018
4-gradient
From the use of the Minkowski metric, converting between contravariant and covariant
Where we have already defined the covariant term,
and the contravariant term
From quantum mechanics we know that partial differential is a linear operator. Following the rules of matrix multiplication this implies that the derivative with respect to a contravariant coordinate transforms as a covariant 4-vector, and the derivative with respect to a covariant coordinate transforms as a contravariant vector.
Since it is an operator, the dot product of two partial differentials yields an operator known as the D'Alembert operator.