Difference between revisions of "Relativistic Units"
Jump to navigation
Jump to search
(23 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | <center><math>\underline{\textbf{Navigation}}</math> | ||
+ | |||
+ | [[Relativistic_Frames_of_Reference|<math>\vartriangleleft </math>]] | ||
+ | [[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]] | ||
+ | [[4-vectors|<math>\vartriangleright </math>]] | ||
+ | |||
+ | </center> | ||
+ | |||
=Relativistic Units= | =Relativistic Units= | ||
Line 33: | Line 41: | ||
− | The 4-vectors and 4-momenta are defined to be in units of distance and momentum and as such must be multiplied or divided respectively by the speed of light to meet this requirement. For simplicity, the units of c can be chosen to be 1. | + | The 4-vectors and 4-momenta are defined to be in units of distance and momentum and as such must be multiplied or divided respectively by the speed of light to meet this requirement. For simplicity, the units of c can be chosen to be 1. This implies: |
+ | |||
+ | <center><math>c=1=\frac{length}{time}</math></center> | ||
+ | |||
+ | |||
+ | <center><math>\therefore\ length\ units=time\ units</math></center> | ||
+ | |||
+ | |||
+ | This also implies that from the definition of an electromagnetic wave | ||
+ | |||
+ | |||
+ | <center><math>c \equiv \frac{1}{\sqrt{\epsilon_0 \mu_0}} \rightarrow \epsilon_0=\mu_0=1</math></center> | ||
+ | |||
+ | |||
+ | The relativistic equation for energy | ||
+ | |||
+ | <center><math>E^2 \equiv m^2c^4+p^2c^2</math></center> | ||
+ | |||
+ | |||
+ | <center><math>\rightarrow E^2 = m^2+p^2</math></center> | ||
+ | |||
+ | |||
+ | <center><math>\therefore\ energy\ units=mass\ units=momentum\ units</math></center> | ||
+ | |||
+ | |||
+ | The Planck-Einstein relation and the de Broglie relation can be used to substitute into the relativistic energy equation | ||
+ | |||
+ | |||
+ | <center><math>E^2 = m^2+p^2</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>\rightarrow E=\hbar \omega \qquad \qquad p=k \hbar</math></center> | ||
+ | |||
+ | |||
+ | <center><math> \hbar^2 \omega^2 = m^2+k^2 \hbar^2</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | Since the units of <math>\omega =\frac{1}{time}\ </math> and the units of <math>k=\frac{1}{length}</math> setting <math>\hbar=1</math> will preserve the relationship | ||
+ | |||
+ | |||
+ | |||
+ | <center><math> length\ units=time\ units</math></center> | ||
+ | |||
+ | |||
+ | <center><math>\rightarrow Energy\ units=mass\ units=momentum\ units=\frac{1}{length\ units}=\frac{1}{time\ units}</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | The amount of energy gained by a charged particle moving across an electric potential of 1 volt are declared to be electron-volts | ||
− | |||
− | <center><math> | + | <center><math>1eV \equiv (1V)(1e^-)= \frac{1J}{1C}(1.6021766208(98)\times 10^{-19} C)=1.6021766208(98)\times 10^{-19} J</math></center> |
+ | <center><math>\hbar \equiv 1.054571800(13)\times 10^{-34} J \cdot s \qquad c \equiv 2.99792458\frac{m}{s}</math></center> | ||
− | <center><math> | + | <center><math>\hbar c = 3.16152649\times 10^{-26} J\cdot m</math></center> |
− | + | ||
− | + | ||
− | + | Converting to eV | |
− | + | ||
− | + | <center><math>\frac{3.16152649\times 10^{-26} J\cdot m}{1.6021766208(98)\times 10^{-19} J}=\frac{1.9732696\times 10^{-7} eV \cdot m</math></center> | |
− | + | ||
− | + | ||
− | \ | + | ---- |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | \frac{\ | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | \frac{\ | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | <center><math>\underline{\textbf{Navigation}}</math> | ||
− | + | [[Relativistic_Frames_of_Reference|<math>\vartriangleleft </math>]] | |
+ | [[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]] | ||
+ | [[4-vectors|<math>\vartriangleright </math>]] | ||
− | + | </center> |
Latest revision as of 18:46, 15 May 2018
Relativistic Units
From the definition of 4-vectors shown earlier, we know that
The 4-vectors and 4-momenta are defined to be in units of distance and momentum and as such must be multiplied or divided respectively by the speed of light to meet this requirement. For simplicity, the units of c can be chosen to be 1. This implies:
This also implies that from the definition of an electromagnetic wave
The relativistic equation for energy
The Planck-Einstein relation and the de Broglie relation can be used to substitute into the relativistic energy equation
Since the units of
and the units of setting will preserve the relationship
The amount of energy gained by a charged particle moving across an electric potential of 1 volt are declared to be electron-volts
Converting to eV