Difference between revisions of "Total Energy in CM Frame"

From New IAC Wiki
Jump to navigation Jump to search
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
<center><math>\textbf{\underline{Navigation}}</math>
+
<center><math>\underline{\textbf{Navigation}}</math>
  
 
[[Special_Case_of_Equal_Mass_Particles|<math>\vartriangleleft </math>]]
 
[[Special_Case_of_Equal_Mass_Particles|<math>\vartriangleleft </math>]]
Line 83: Line 83:
  
 
where <math>E_{1}=\sqrt{p_{1}^2+m^2}\approx 11000 MeV</math>
 
where <math>E_{1}=\sqrt{p_{1}^2+m^2}\approx 11000 MeV</math>
 +
 +
 +
 +
----
 +
 +
 +
 +
<center><math>\underline{\textbf{Navigation}}</math>
 +
 +
[[Special_Case_of_Equal_Mass_Particles|<math>\vartriangleleft </math>]]
 +
[[VanWasshenova_Thesis#Initial_4-momentum_Components|<math>\triangle </math>]]
 +
[[Scattered_and_Moller_Electron_Energies_in_CM_Frame|<math>\vartriangleright </math>]]
 +
 +
</center>

Latest revision as of 18:54, 15 May 2018

Navigation_


Total Energy in CM Frame

Setting the lengths of the 4-momenta equal to each other,

P2=P2


we can use this for the collision of two particles of mass m. Since the total momentum is zero in the Center of Mass frame, we can express total energy in the center of mass frame as

(E1+E2)2(p 1+p 2)2=s=(E1+E2)2(p1+p2)2


(E)2(p )2=(E1+E2)2(p1+p2)2


(E)2=(E1+E2)2(p1+p2)2


E=(E1+E2)2(p1+p2)2


E=E21+2E1E2+E22p1.p2p1.p1p2.p1p2.p2


E=(E21p21)+(E22p22)+2E1E2p1.p2p2.p1


E=(E21p21)+(E22p22)+2E1E2p1p2cos(θ)p2p1cos(θ)


E=m21+m22+2E1E2p1p2cos(θ)p2p1cos(θ)


E=m21+m22+2E1E22p1p2cos(θ)


E=m21+m22+2E1E22p1p2cos(θ)


Using the relations βp/Ep=βE


E=2m2+2E1E2(1β1β2cos(θ))


where θ is the angle between the particles in the Lab frame.



In the frame where one particle (p2) is at rest


β2=0


p2=0


which implies,


E2=p22+m2=m



E=(2m(m+E1)1/2=(2(.511MeV)(.511MeV+(11000MeV)2+(.511MeV)2)1/2106.030760886MeV

where E1=p21+m211000MeV




Navigation_