Difference between revisions of "Limits based on Mandelstam Variables"
(6 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | <center><math>\ | + | <center><math>\underline{\textbf{Navigation}}</math> |
[[U-Channel|<math>\vartriangleleft </math>]] | [[U-Channel|<math>\vartriangleleft </math>]] | ||
[[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]] | [[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]] | ||
− | [[ | + | [[Limit_of_Energy_in_Lab_Frame|<math>\vartriangleright </math>]] |
</center> | </center> | ||
Line 126: | Line 126: | ||
− | <center><math>s= | + | <center><math>s=4m^2+4 \vec p \ ^{*2})</math></center> |
+ | |||
+ | |||
+ | <center><math>\frac{s-4m^2}{4}= \vec p \ ^{*2}</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <center><math>t=-2 p \ ^{*2}(1-cos\ \theta)=\frac{-2(s-4m^2)}{4}(1-cos\ \theta)</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>\frac{-2t}{s-4m^2}=(1-cos\ \theta)</math></center> | ||
+ | |||
+ | |||
+ | <center><math>cos\ \theta=1-\frac{-2t}{s-4m^2}</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | ---- | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>\underline{\textbf{Navigation}}</math> | ||
+ | |||
+ | [[U-Channel|<math>\vartriangleleft </math>]] | ||
+ | [[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]] | ||
+ | [[Limit_of_Energy_in_Lab_Frame|<math>\vartriangleright </math>]] | ||
+ | |||
+ | </center> |
Latest revision as of 19:07, 1 January 2019
Limits based on Mandelstam Variables
Since the Mandelstam variables are the scalar product of 4-momenta, which are invariants, they are invariants as well. The sum of these invariant variables must also be invariant as well. Find the sum of the 3 Mandelstam variables when the two particles have equal mass in the center of mass frame gives:
Since
This implies
In turn, this implies
At the condition both t and u are equal to zero, we find
Holding u constant at zero we can find the minimum of t
The maximum transfer of momentum would be
The domain of the arccos function is from −1 to +1 inclusive and the range is from 0 to π radians inclusive (or from 0° to 180°). We find as expected for u=0 at
However, from the definition of s being invariant between frames of reference
In the center of mass frame of reference,
Using the relativistic energy equation