Difference between revisions of "4-momenta"
Jump to navigation
Jump to search
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | <center><math>\ | + | <center><math>\underline{\textbf{Navigation}}</math> |
[[4-vectors|<math>\vartriangleleft </math>]] | [[4-vectors|<math>\vartriangleleft </math>]] | ||
[[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]] | [[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]] | ||
− | [[ | + | [[Frame_of_Reference_Transformation|<math>\vartriangleright </math>]] |
</center> | </center> | ||
Line 10: | Line 10: | ||
− | As was previously shown for the space-time 4-vector, a similar 4-vector can be composed of momentum. Using index notation, the energy and momentum components can be combined into a single "4-vector" <math>\mathbf{p^{\mu}},\ \mu=0,\ 1,\ 2,\ 3</math>, that has units of momentum(i.e. E/c is a distance). | + | As was previously shown for the space-time 4-vector, a similar 4-vector can be composed of momentum. Using index notation, the energy and momentum components can be combined into a single "4-vector" <math>\mathbf{p^{\mu}},\ \mu=0,\ 1,\ 2,\ 3</math>, that has units of momentum(i.e. E/c is a distance with c=1). |
<center><math>\mathbf{P} \equiv | <center><math>\mathbf{P} \equiv | ||
Line 20: | Line 20: | ||
\end{bmatrix}= | \end{bmatrix}= | ||
\begin{bmatrix} | \begin{bmatrix} | ||
− | E | + | E \\ |
p_x \\ | p_x \\ | ||
p_y \\ | p_y \\ | ||
Line 39: | Line 39: | ||
− | <center><math>\mathbf P \cdot \mathbf P = | + | <center><math>\mathbf P \cdot \mathbf P = E^2-\vec p\ ^2</math></center> |
Line 48: | Line 48: | ||
− | <center><math>\mathbf P \cdot \mathbf P = | + | <center><math>\mathbf P \cdot \mathbf P = E^2-E^2+m^2</math></center> |
Line 70: | Line 70: | ||
Using | Using | ||
− | <center><math>\mathbf | + | <center><math>\mathbf P^2=m^2</math></center> |
This gives | This gives | ||
Line 100: | Line 100: | ||
− | <center><math>\ | + | <center><math>\underline{\textbf{Navigation}}</math> |
[[4-vectors|<math>\vartriangleleft </math>]] | [[4-vectors|<math>\vartriangleleft </math>]] | ||
[[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]] | [[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]] | ||
− | [[ | + | [[Frame_of_Reference_Transformation|<math>\vartriangleright </math>]] |
</center> | </center> |
Latest revision as of 18:47, 15 May 2018
4-momenta
As was previously shown for the space-time 4-vector, a similar 4-vector can be composed of momentum. Using index notation, the energy and momentum components can be combined into a single "4-vector"
, that has units of momentum(i.e. E/c is a distance with c=1).
As shown earlier,
Following the 4-vector of space-time for momentum-energy,
Using the relativistic equation for energy
A 4-momenta vector can be composed of different 4-momenta vectors,
This allows us to write
Using
This gives
Using the relationship shown for 4-vectors,