Difference between revisions of "4-momenta"
Jump to navigation
Jump to search
(17 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | <center><math>\underline{\textbf{Navigation}}</math> | ||
+ | |||
+ | [[4-vectors|<math>\vartriangleleft </math>]] | ||
+ | [[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]] | ||
+ | [[Frame_of_Reference_Transformation|<math>\vartriangleright </math>]] | ||
+ | |||
+ | </center> | ||
+ | |||
=4-momenta= | =4-momenta= | ||
− | As was previously shown for the space-time 4-vector, a similar 4-vector can be composed of momentum. Using index notation, the energy and momentum components can be combined into a single "4-vector" <math>\mathbf{p^{\mu}},\ \mu=0,\ 1,\ 2,\ 3</math>, that has units of momentum(i.e. E/c is a distance). | + | As was previously shown for the space-time 4-vector, a similar 4-vector can be composed of momentum. Using index notation, the energy and momentum components can be combined into a single "4-vector" <math>\mathbf{p^{\mu}},\ \mu=0,\ 1,\ 2,\ 3</math>, that has units of momentum(i.e. E/c is a distance with c=1). |
<center><math>\mathbf{P} \equiv | <center><math>\mathbf{P} \equiv | ||
Line 12: | Line 20: | ||
\end{bmatrix}= | \end{bmatrix}= | ||
\begin{bmatrix} | \begin{bmatrix} | ||
− | E | + | E \\ |
p_x \\ | p_x \\ | ||
p_y \\ | p_y \\ | ||
p_z | p_z | ||
\end{bmatrix}</math></center> | \end{bmatrix}</math></center> | ||
+ | |||
+ | |||
+ | As shown earlier, | ||
+ | |||
+ | |||
+ | <center><math>\mathbf R \cdot \mathbf R = x_0^2-(x_1^2+x_2^2+x_3^2)</math></center> | ||
+ | |||
+ | |||
+ | Following the 4-vector of space-time for momentum-energy, | ||
+ | |||
+ | |||
+ | <center><math>\mathbf P \cdot \mathbf P = p_0^2-(p_1^2+p_2^2+p_3^2)</math></center> | ||
+ | |||
+ | |||
+ | <center><math>\mathbf P \cdot \mathbf P = E^2-\vec p\ ^2</math></center> | ||
+ | |||
+ | |||
+ | Using the relativistic equation for energy | ||
+ | |||
+ | |||
+ | <center><math>E^2=\vec p\ ^2+m^2</math></center> | ||
+ | |||
+ | |||
+ | <center><math>\mathbf P \cdot \mathbf P = E^2-E^2+m^2</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>\mathbf P \cdot \mathbf P = m^2</math></center> | ||
+ | |||
+ | |||
+ | A 4-momenta vector can be composed of different 4-momenta vectors, | ||
+ | |||
+ | <center><math>\mathbf P \equiv \mathbf P_1 +\mathbf P_2</math></center> | ||
+ | |||
+ | |||
+ | This allows us to write | ||
+ | |||
+ | <center><math>\mathbf P^2 \equiv (\mathbf P_1+\mathbf P_2)^2</math></center> | ||
+ | |||
+ | |||
+ | <center><math>\mathbf (\mathbf P_1 +\mathbf P_2)^2 \equiv \mathbf P_1^2+2 \mathbf P_1 \mathbf P_2+\mathbf P_2^2</math></center> | ||
+ | |||
+ | |||
+ | Using | ||
+ | |||
+ | <center><math>\mathbf P^2=m^2</math></center> | ||
+ | |||
+ | This gives | ||
+ | |||
+ | <center><math>\mathbf (\mathbf P_1 +\mathbf P_2)^2 \equiv m_1^2+2 \mathbf P_1 \mathbf P_2+m_2^2</math></center> | ||
+ | |||
+ | |||
+ | Using the relationship shown for 4-vectors, | ||
+ | |||
+ | <center><math>\mathbf R_1 \cdot \mathbf R_2 = x_{0_1}x_{0_2}-(x_{1_1}x_{1_2}+x_{2_1}x_{2_2}+x_{3_1}x_{3_2})</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>\Rightarrow \mathbf P_1 \cdot \mathbf P_2 = p_{0_1}p_{0_2}-(p_{1_1}p_{1_2}+p_{2_1}p_{2_2}+p_{3_1}p_{3_2})</math></center> | ||
+ | |||
+ | |||
+ | <center><math>\mathbf P_1 \cdot \mathbf P_2 = E_{1}E_{2}-(\vec p_1 \vec p_2)</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>\mathbf (\mathbf P_1 +\mathbf P_2)^2 \equiv m_1^2+2E_{1}E_{2}-2(\vec p_1 \vec p_2)+m_2^2</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ---- | ||
+ | |||
+ | |||
+ | <center><math>\underline{\textbf{Navigation}}</math> | ||
+ | |||
+ | [[4-vectors|<math>\vartriangleleft </math>]] | ||
+ | [[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]] | ||
+ | [[Frame_of_Reference_Transformation|<math>\vartriangleright </math>]] | ||
+ | |||
+ | </center> |
Latest revision as of 18:47, 15 May 2018
4-momenta
As was previously shown for the space-time 4-vector, a similar 4-vector can be composed of momentum. Using index notation, the energy and momentum components can be combined into a single "4-vector"
, that has units of momentum(i.e. E/c is a distance with c=1).
As shown earlier,
Following the 4-vector of space-time for momentum-energy,
Using the relativistic equation for energy
A 4-momenta vector can be composed of different 4-momenta vectors,
This allows us to write
Using
This gives
Using the relationship shown for 4-vectors,