Difference between revisions of "4-momenta"

From New IAC Wiki
Jump to navigation Jump to search
 
(18 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
<center><math>\underline{\textbf{Navigation}}</math>
 +
 +
[[4-vectors|<math>\vartriangleleft </math>]]
 +
[[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]]
 +
[[Frame_of_Reference_Transformation|<math>\vartriangleright </math>]]
 +
 +
</center>
 +
 
=4-momenta=
 
=4-momenta=
  
  
As was previously shown for the space-time 4-vector, a similar 4-vector can be composed of momentum.  Using index notation, the energy and momentum components can be combined  into a single "4-vector" <math>\mathbf{x^{\mu}},\ \mu=0,\ 1,\ 2,\ 3</math>, that has units of momentum(i.e. E/c is a distance).
+
As was previously shown for the space-time 4-vector, a similar 4-vector can be composed of momentum.  Using index notation, the energy and momentum components can be combined  into a single "4-vector" <math>\mathbf{p^{\mu}},\ \mu=0,\ 1,\ 2,\ 3</math>, that has units of momentum(i.e. E/c is a distance with c=1).
  
 
<center><math>\mathbf{P} \equiv  
 
<center><math>\mathbf{P} \equiv  
Line 12: Line 20:
 
\end{bmatrix}=
 
\end{bmatrix}=
 
\begin{bmatrix}
 
\begin{bmatrix}
E/c \\
+
E \\
 
p_x \\
 
p_x \\
 
p_y \\
 
p_y \\
 
p_z
 
p_z
 
\end{bmatrix}</math></center>
 
\end{bmatrix}</math></center>
 +
 +
 +
As shown earlier,
 +
 +
 +
<center><math>\mathbf R \cdot \mathbf R = x_0^2-(x_1^2+x_2^2+x_3^2)</math></center>
 +
 +
 +
Following the 4-vector of space-time for momentum-energy,
 +
 +
 +
<center><math>\mathbf P \cdot \mathbf P = p_0^2-(p_1^2+p_2^2+p_3^2)</math></center>
 +
 +
 +
<center><math>\mathbf P \cdot \mathbf P = E^2-\vec p\ ^2</math></center>
 +
 +
 +
Using the relativistic equation for energy
 +
 +
 +
<center><math>E^2=\vec p\ ^2+m^2</math></center>
 +
 +
 +
<center><math>\mathbf P \cdot \mathbf P = E^2-E^2+m^2</math></center>
 +
 +
 +
 +
<center><math>\mathbf P \cdot \mathbf P = m^2</math></center>
 +
 +
 +
A 4-momenta vector can be composed of different 4-momenta vectors,
 +
 +
<center><math>\mathbf P \equiv \mathbf P_1 +\mathbf P_2</math></center>
 +
 +
 +
This allows us to write
 +
 +
<center><math>\mathbf P^2 \equiv (\mathbf P_1+\mathbf P_2)^2</math></center>
 +
 +
 +
<center><math>\mathbf (\mathbf P_1 +\mathbf P_2)^2 \equiv \mathbf P_1^2+2 \mathbf P_1 \mathbf P_2+\mathbf P_2^2</math></center>
 +
 +
 +
Using
 +
 +
<center><math>\mathbf P^2=m^2</math></center>
 +
 +
This gives
 +
 +
<center><math>\mathbf (\mathbf P_1 +\mathbf P_2)^2 \equiv m_1^2+2 \mathbf P_1 \mathbf P_2+m_2^2</math></center>
 +
 +
 +
Using the relationship shown for 4-vectors,
 +
 +
<center><math>\mathbf R_1 \cdot \mathbf R_2 = x_{0_1}x_{0_2}-(x_{1_1}x_{1_2}+x_{2_1}x_{2_2}+x_{3_1}x_{3_2})</math></center>
 +
 +
 +
 +
<center><math>\Rightarrow \mathbf P_1 \cdot \mathbf P_2 = p_{0_1}p_{0_2}-(p_{1_1}p_{1_2}+p_{2_1}p_{2_2}+p_{3_1}p_{3_2})</math></center>
 +
 +
 +
<center><math>\mathbf P_1 \cdot \mathbf P_2 = E_{1}E_{2}-(\vec p_1 \vec p_2)</math></center>
 +
 +
 +
 +
<center><math>\mathbf (\mathbf P_1 +\mathbf P_2)^2 \equiv m_1^2+2E_{1}E_{2}-2(\vec p_1 \vec p_2)+m_2^2</math></center>
 +
 +
 +
 +
 +
 +
 +
----
 +
 +
 +
<center><math>\underline{\textbf{Navigation}}</math>
 +
 +
[[4-vectors|<math>\vartriangleleft </math>]]
 +
[[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]]
 +
[[Frame_of_Reference_Transformation|<math>\vartriangleright </math>]]
 +
 +
</center>

Latest revision as of 18:47, 15 May 2018

[math]\underline{\textbf{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]

4-momenta

As was previously shown for the space-time 4-vector, a similar 4-vector can be composed of momentum. Using index notation, the energy and momentum components can be combined into a single "4-vector" [math]\mathbf{p^{\mu}},\ \mu=0,\ 1,\ 2,\ 3[/math], that has units of momentum(i.e. E/c is a distance with c=1).

[math]\mathbf{P} \equiv \begin{bmatrix} p^0 \\ p^1 \\ p^2 \\ p^3 \end{bmatrix}= \begin{bmatrix} E \\ p_x \\ p_y \\ p_z \end{bmatrix}[/math]


As shown earlier,


[math]\mathbf R \cdot \mathbf R = x_0^2-(x_1^2+x_2^2+x_3^2)[/math]


Following the 4-vector of space-time for momentum-energy,


[math]\mathbf P \cdot \mathbf P = p_0^2-(p_1^2+p_2^2+p_3^2)[/math]


[math]\mathbf P \cdot \mathbf P = E^2-\vec p\ ^2[/math]


Using the relativistic equation for energy


[math]E^2=\vec p\ ^2+m^2[/math]


[math]\mathbf P \cdot \mathbf P = E^2-E^2+m^2[/math]


[math]\mathbf P \cdot \mathbf P = m^2[/math]


A 4-momenta vector can be composed of different 4-momenta vectors,

[math]\mathbf P \equiv \mathbf P_1 +\mathbf P_2[/math]


This allows us to write

[math]\mathbf P^2 \equiv (\mathbf P_1+\mathbf P_2)^2[/math]


[math]\mathbf (\mathbf P_1 +\mathbf P_2)^2 \equiv \mathbf P_1^2+2 \mathbf P_1 \mathbf P_2+\mathbf P_2^2[/math]


Using

[math]\mathbf P^2=m^2[/math]

This gives

[math]\mathbf (\mathbf P_1 +\mathbf P_2)^2 \equiv m_1^2+2 \mathbf P_1 \mathbf P_2+m_2^2[/math]


Using the relationship shown for 4-vectors,

[math]\mathbf R_1 \cdot \mathbf R_2 = x_{0_1}x_{0_2}-(x_{1_1}x_{1_2}+x_{2_1}x_{2_2}+x_{3_1}x_{3_2})[/math]


[math]\Rightarrow \mathbf P_1 \cdot \mathbf P_2 = p_{0_1}p_{0_2}-(p_{1_1}p_{1_2}+p_{2_1}p_{2_2}+p_{3_1}p_{3_2})[/math]


[math]\mathbf P_1 \cdot \mathbf P_2 = E_{1}E_{2}-(\vec p_1 \vec p_2)[/math]


[math]\mathbf (\mathbf P_1 +\mathbf P_2)^2 \equiv m_1^2+2E_{1}E_{2}-2(\vec p_1 \vec p_2)+m_2^2[/math]






[math]\underline{\textbf{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]