|
|
| (21 intermediate revisions by the same user not shown) |
| Line 1: |
Line 1: |
| − | <center><math>\textbf{\underline{Navigation}}</math> | + | <center><math>\underline{\textbf{Navigation}}</math> |
| | | | |
| − | [[Relativistic_Frames_of_Reference|<math>\vartriangleleft </math>]] | + | [[Relativistic_Units|<math>\vartriangleleft </math>]] |
| − | [[VanWasshenova_Thesis#Weighted_Isotropic_Distribution_in_Lab_Frame|<math>\triangle </math>]] | + | [[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]] |
| − | [[Phase_space_Limiting_Particles|<math>\vartriangleright </math>]] | + | [[4-momenta|<math>\vartriangleright </math>]] |
| | | | |
| | </center> | | </center> |
| Line 38: |
Line 38: |
| | | | |
| | | | |
| − | <center>Since <math>ds^2 </math> is nothing more than a dot product of a vector with itself, we should expect the components of the indices to follow a similar relationship.</center>
| + | Since <math>ds^2 </math> is nothing more than a dot product of a vector with itself, we should expect the components of the indices to follow a similar relationship. Following the rules of matrix multiplication, the dot product of two 4-vectors should follow the form: |
| − | | |
| | | | |
| | <center><math>(ds)^2\equiv d \mathbf{x_{\mu}} d \mathbf{x^{\mu}}</math></center> | | <center><math>(ds)^2\equiv d \mathbf{x_{\mu}} d \mathbf{x^{\mu}}</math></center> |
| Line 55: |
Line 54: |
| | \end{bmatrix}</math></center> | | \end{bmatrix}</math></center> |
| | | | |
| | + | This gives the desired results as expected. |
| | | | |
| | <center><math>(ds)^2 \equiv (dx^0)^{2}-(dx^1)^2-(dx^2)^2-(dx^3)^2=(dx^0)^{'2}-(dx^1)^{'2}-(dx^2)^{'2}-(dx^3)^{'2}</math></center> | | <center><math>(ds)^2 \equiv (dx^0)^{2}-(dx^1)^2-(dx^2)^2-(dx^3)^2=(dx^0)^{'2}-(dx^1)^{'2}-(dx^2)^{'2}-(dx^3)^{'2}</math></center> |
| Line 108: |
Line 108: |
| | | | |
| | | | |
| − | <center><math>ds^2 \equiv \eta_{\mu \nu} \mathbf{dx^{\mu}} \mathbf{dx^{\mu}}=d\mathbf{R} \cdot d\mathbf{R}</math></center> | + | <center><math>ds^2 \equiv \eta_{\nu}^{ \mu} \mathbf{dx^{\mu}} \mathbf{dx^{\mu}}=d\mathbf{R} \cdot d\mathbf{R}</math></center> |
| − | | |
| | | | |
| | | | |
| − | <center><math>\mathbf R \cdot \mathbf R = s = \eta_{\mu \mu} \mathbf{x^{\mu}} \mathbf{x^{\mu}}</math></center>
| |
| | | | |
| | + | <center><math>\mathbf R \cdot \mathbf R = s = \eta_{\nu}^{ \mu} \mathbf{x^{\mu}} \mathbf{x^{\mu}}</math></center> |
| | | | |
| − | <center><math>\mathbf R \cdot \mathbf R = x_0^2-(x_1^2+x_2^2+x_3^2)</math></center>
| |
| | | | |
| | + | <center><math>\mathbf R_1 \cdot \mathbf R^1 = x_0^2-(x_1^2+x_2^2+x_3^2)</math></center> |
| | | | |
| − | This is useful in that it shows that the scalar product of two 4-vectors is an invariant since the time-space interval is an invariant.
| |
| | | | |
| | | | |
| | + | Similarly, for two different 4-vectors, |
| | | | |
| | | | |
| − | Using the Lorentz transformations and the index notation,
| |
| | | | |
| − | <center><math> | + | <center><math>\mathbf R_1 \cdot \mathbf R^2 = x_{0_1}x^{0_2}-(x_{1_1}x^{1_2}+x_{2_1}x^{2_2}+x_{3_1}x^{3_2})</math></center> |
| − | \begin{cases} | |
| − | t'=\gamma (t-vz/c^2) \\
| |
| | | | |
| − | x'=x' \\
| |
| | | | |
| − | y'=y' \\
| + | This is useful in that it shows that the scalar product of two 4-vectors is an invariant since the time-space interval is an invariant. |
| − | | |
| − | z'=\gamma (z-vt)
| |
| − | \end{cases}
| |
| − | </math></center>
| |
| − | | |
| − | | |
| − | <center><math>\begin{bmatrix}
| |
| − | x'^0 \\
| |
| − | x'^1 \\
| |
| − | x'^2\\
| |
| − | x'^3
| |
| − | \end{bmatrix}=
| |
| − | \begin{bmatrix}
| |
| − | \gamma (x^0-vx^3/c) \\
| |
| − | x^1 \\
| |
| − | x^2 \\
| |
| − | \gamma (x^3-vx^0)
| |
| − | \end{bmatrix}
| |
| − | =
| |
| − | \begin{bmatrix}
| |
| − | \gamma (x^0-\beta x^3) \\
| |
| − | x^1 \\
| |
| − | x^2 \\
| |
| − | \gamma (x^3-vx^0)
| |
| − | \end{bmatrix}</math></center>
| |
| − | | |
| − | | |
| − | | |
| − | <center>Where <math>\beta \equiv \frac{v}{c}</math></center>
| |
| − | | |
| − | This can be expressed in matrix form as | |
| − | | |
| − | <center><math>\begin{bmatrix}
| |
| − | x'^0 \\
| |
| − | x'^1 \\
| |
| − | x'^2\\
| |
| − | x'^3
| |
| − | \end{bmatrix}=
| |
| − | \begin{bmatrix}
| |
| − | \gamma & 0 & 0 & -\gamma \beta \\
| |
| − | 0 & 1 & 0 & 0 \\
| |
| − | 0 & 0 & 1 & 0 \\
| |
| − | -\gamma \beta & 0 & 0 & \gamma | |
| − | \end{bmatrix}
| |
| − | \cdot
| |
| − | \begin{bmatrix}
| |
| − | x^0 \\
| |
| − | x^1 \\
| |
| − | x^2 \\
| |
| − | x^3
| |
| − | \end{bmatrix}</math></center>
| |
| − | | |
| − | | |
| − | Letting the indices run from 0 to 3, we can write
| |
| − | | |
| − | <center><math>\mathbf x'^{\mu}=\sum_{\nu=0}^3 (\Lambda_{\nu}^{\mu}) \mathbf x^{\nu}</math></center>
| |
| − | | |
| − | | |
| − | <center>Where <math>\Lambda</math> is the Lorentz transformation matrix for motion in the z direction.</center>
| |
| − | | |
| − | | |
| − | The Lorentz transformations are also invariant in that they are just a rotation, i.e. Det <math>\Lambda=1</math>. The inner product is preserved,
| |
| − | | |
| − | | |
| − | | |
| − | <center><math>\Lambda_{\nu}^{\mu} \eta_{\nu}^{\mu} \Lambda_{\mu}^{\nu}=\eta_{\nu}^{\mu}</math></center>
| |
| − | | |
| − | | |
| − | <center><math>
| |
| − | \begin{bmatrix}
| |
| − | \gamma & 0 & 0 & -\gamma \beta \\
| |
| − | 0 & 1 & 0 & 0 \\
| |
| − | 0 & 0 & 1 & 0 \\
| |
| − | -\gamma \beta & 0 & 0 & \gamma
| |
| − | \end{bmatrix}\cdot
| |
| − | \begin{bmatrix}
| |
| − | 1 & 0 & 0 & 0 \\
| |
| − | 0 &-1 & 0 & 0 \\
| |
| − | 0 & 0 & -1 & 0 \\
| |
| − | 0 & 0 & 0 & -1
| |
| − | \end{bmatrix}\cdot
| |
| − | \begin{bmatrix}
| |
| − | \gamma & 0 & 0 & -\gamma \beta \\
| |
| − | 0 & 1 & 0 & 0 \\
| |
| − | 0 & 0 & 1 & 0 \\
| |
| − | -\gamma \beta & 0 & 0 & \gamma
| |
| − | \end{bmatrix}=
| |
| − | \begin{bmatrix}
| |
| − | 1 & 0 & 0 & 0 \\
| |
| − | 0 &-1 & 0 & 0 \\
| |
| − | 0 & 0 & -1 & 0 \\
| |
| − | 0 & 0 & 0 & -1
| |
| − | \end{bmatrix}^T</math></center>
| |
| − | | |
| − | | |
| − | | |
| − | <center><math>
| |
| − | \begin{bmatrix}
| |
| − | \gamma^2-\beta^2 \gamma^2 & 0 & 0 & 0 \\
| |
| − | 0 & -1 & 0 & 0 \\
| |
| − | 0 & 0 & -1 & 0 \\
| |
| − | 0 & 0 & 0 & -\gamma^2+\beta^2 \gamma^2
| |
| − | \end{bmatrix}=
| |
| − | \begin{bmatrix}
| |
| − | 1 & 0 & 0 & 0 \\
| |
| − | 0 &-1 & 0 & 0 \\
| |
| − | 0 & 0 & -1 & 0 \\
| |
| − | 0 & 0 & 0 & -1
| |
| − | \end{bmatrix}</math></center>
| |
| − | | |
| − | | |
| − | | |
| − | <center><math>
| |
| − | \begin{bmatrix}
| |
| − | \gamma^2(1-\beta^2) & 0 & 0 & 0 \\
| |
| − | 0 & -1 & 0 & 0 \\
| |
| − | 0 & 0 & -1 & 0 \\
| |
| − | 0 & 0 & 0 & -\gamma^2(1-\beta^2)
| |
| − | \end{bmatrix}=
| |
| − | \begin{bmatrix}
| |
| − | 1 & 0 & 0 & 0 \\
| |
| − | 0 &-1 & 0 & 0 \\
| |
| − | 0 & 0 & -1 & 0 \\
| |
| − | 0 & 0 & 0 & -1
| |
| − | \end{bmatrix}</math></center>
| |
| | | | |
| − |
| |
| − |
| |
| − | <center>Where <math>\gamma \equiv \frac{1}{\sqrt{1-\beta^2}}</math></center>
| |
| − |
| |
| − |
| |
| − | <center><math>
| |
| − | \begin{bmatrix}
| |
| − | \frac{\gamma^2}{\gamma^2} & 0 & 0 & 0 \\
| |
| − | 0 & -1 & 0 & 0 \\
| |
| − | 0 & 0 & -1 & 0 \\
| |
| − | 0 & 0 & 0 & -\frac{\gamma^2}{\gamma^2}
| |
| − | \end{bmatrix}=
| |
| − | \begin{bmatrix}
| |
| − | 1 & 0 & 0 & 0 \\
| |
| − | 0 &-1 & 0 & 0 \\
| |
| − | 0 & 0 & -1 & 0 \\
| |
| − | 0 & 0 & 0 & -1
| |
| − | \end{bmatrix}</math></center>
| |
| | | | |
| | | | |
| | | | |
| | | | |
| − | <center><math>
| |
| − | \begin{bmatrix}
| |
| − | 1 & 0 & 0 & 0 \\
| |
| − | 0 & -1 & 0 & 0 \\
| |
| − | 0 & 0 & -1 & 0 \\
| |
| − | 0 & 0 & 0 & -1
| |
| − | \end{bmatrix}=
| |
| − | \begin{bmatrix}
| |
| − | 1 & 0 & 0 & 0 \\
| |
| − | 0 &-1 & 0 & 0 \\
| |
| − | 0 & 0 & -1 & 0 \\
| |
| − | 0 & 0 & 0 & -1
| |
| − | \end{bmatrix}</math></center>
| |
| | ---- | | ---- |
| | | | |
| | | | |
| | | | |
| − | <center><math>\textbf{\underline{Navigation}}</math> | + | <center><math>\underline{\textbf{Navigation}}</math> |
| | | | |
| − | [[Relativistic_Frames_of_Reference|<math>\vartriangleleft </math>]] | + | [[Relativistic_Units|<math>\vartriangleleft </math>]] |
| − | [[VanWasshenova_Thesis#Weighted_Isotropic_Distribution_in_Lab_Frame|<math>\triangle </math>]] | + | [[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]] |
| − | [[Phase_space_Limiting_Particles|<math>\vartriangleright </math>]] | + | [[4-momenta|<math>\vartriangleright </math>]] |
| | | | |
| | </center> | | </center> |
[math]\underline{\textbf{Navigation}}[/math]
[math]\vartriangleleft [/math]
[math]\triangle [/math]
[math]\vartriangleright [/math]
4-vectors
Using index notation, the time and space coordinates can be combined into a single "4-vector" [math]\mathbf{x^{\mu}},\ \mu=0,\ 1,\ 2,\ 3[/math], that has units of length(i.e. ct is a distance).
[math]\mathbf{R} \equiv
\begin{bmatrix}
x^0 \\
x^1 \\
x^2 \\
x^3
\end{bmatrix}=
\begin{bmatrix}
ct \\
x \\
y \\
z
\end{bmatrix}[/math]
We can express the space time interval using the index notation
[math](ds)^2\equiv c^2 dt^{'2}-dx^{'2}-dy^{'2}-dz^{'2}= c^2 dt^{2}-dx^2-dy^2-dz^2[/math]
[math](ds)^2\equiv (dx^0)^{'2}-(dx^1)^{'2}-(dx^2)^{'2}-(dx^3)^{'2}= (dx^0)^{2}-(dx^1)^2-(dx^2)^2-(dx^3)^2[/math]
Since [math]ds^2 [/math] is nothing more than a dot product of a vector with itself, we should expect the components of the indices to follow a similar relationship. Following the rules of matrix multiplication, the dot product of two 4-vectors should follow the form:
[math](ds)^2\equiv d \mathbf{x_{\mu}} d \mathbf{x^{\mu}}[/math]
[math](ds)^2\equiv
\begin{bmatrix}
dx_0 & -dx_1 & -dx_2 & -dx_3
\end{bmatrix} \cdot
\begin{bmatrix}
dx^0 \\
dx^1 \\
dx^2 \\
dx^3
\end{bmatrix}[/math]
This gives the desired results as expected.
[math](ds)^2 \equiv (dx^0)^{2}-(dx^1)^2-(dx^2)^2-(dx^3)^2=(dx^0)^{'2}-(dx^1)^{'2}-(dx^2)^{'2}-(dx^3)^{'2}[/math]
The change in signs in the covariant term,
[math]\mathbf{x_{\mu}}= \begin{bmatrix}
dx_0 & -dx_1 & -dx_2 & -dx_3
\end{bmatrix}[/math]
from the contravarient term
[math]\mathbf{x^{\mu}}=
\begin{bmatrix}
dx^0 \\
dx^1 \\
dx^2 \\
dx^3
\end{bmatrix}
[/math]
Comes from the Minkowski metric
[math]\eta_{\mu \mu}=
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 &-1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{bmatrix}[/math]
[math]ds^2=
\begin{bmatrix}
dx_0 & dx_1 & dx_2 & dx_3
\end{bmatrix}\cdot
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 &-1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{bmatrix}\cdot
\begin{bmatrix}
dx^0 \\
dx^1 \\
dx^2 \\
dx^3
\end{bmatrix}
[/math]
[math]ds^2 \equiv \eta_{\nu}^{ \mu} \mathbf{dx^{\mu}} \mathbf{dx^{\mu}}=d\mathbf{R} \cdot d\mathbf{R}[/math]
[math]\mathbf R \cdot \mathbf R = s = \eta_{\nu}^{ \mu} \mathbf{x^{\mu}} \mathbf{x^{\mu}}[/math]
[math]\mathbf R_1 \cdot \mathbf R^1 = x_0^2-(x_1^2+x_2^2+x_3^2)[/math]
Similarly, for two different 4-vectors,
[math]\mathbf R_1 \cdot \mathbf R^2 = x_{0_1}x^{0_2}-(x_{1_1}x^{1_2}+x_{2_1}x^{2_2}+x_{3_1}x^{3_2})[/math]
This is useful in that it shows that the scalar product of two 4-vectors is an invariant since the time-space interval is an invariant.
[math]\underline{\textbf{Navigation}}[/math]
[math]\vartriangleleft [/math]
[math]\triangle [/math]
[math]\vartriangleright [/math]