Difference between revisions of "Left Hand Wall"
Jump to navigation
Jump to search
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | <center><math>\ | + | <center><math>\underline{\textbf{Navigation}}</math> |
− | [[ | + | [[Right_Hand_Wall|<math>\vartriangleleft </math>]] |
[[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\triangle </math>]] | [[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\triangle </math>]] | ||
[[The_Ellipse|<math>\vartriangleright </math>]] | [[The_Ellipse|<math>\vartriangleright </math>]] | ||
Line 148: | Line 148: | ||
[[File:leftwall.png]] | [[File:leftwall.png]] | ||
+ | |||
+ | |||
+ | ---- | ||
+ | |||
+ | |||
+ | <center><math>\underline{\textbf{Navigation}}</math> | ||
+ | |||
+ | [[Right_Hand_Wall|<math>\vartriangleleft </math>]] | ||
+ | [[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\triangle </math>]] | ||
+ | [[The_Ellipse|<math>\vartriangleright </math>]] | ||
+ | |||
+ | </center> |
Latest revision as of 20:33, 15 May 2018
Parameterizing this
where the negative sign is applied to the sine function by the even odd relationships of cosine and sine, i.e. ( sin(-t)=-sin(t), cos(-t)=cos(t)) and the fact that the y component is in the 4th quadrant.
Using the equation for y we can solve for t
Substituting this into the expression for x