Difference between revisions of "Plotting Different Frames"

From New IAC Wiki
Jump to navigation Jump to search
(Created page with "We can define different arrays to collect the coordinates in the different frames using a passive transformation. Assuming that the intersection of the ellipse and sense wires i…")
 
 
(23 intermediate revisions by the same user not shown)
Line 1: Line 1:
We can define different arrays to collect the coordinates in the different frames using a passive transformation.  Assuming that the intersection of the ellipse and sense wires is in the y-x plane, we will have a positive rotation, <math>R(\theta_{yx})</math>
+
<center><math>\underline{\textbf{Navigation}}</math>
  
<pre>
+
[[The_Ellipse|<math>\vartriangleleft </math>]]
 +
[[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\triangle </math>]]
 +
[[Parameterizing_the_Ellipse_Equation|<math>\vartriangleright </math>]]
  
rFromYtoX = ( {
+
</center>
    {Cos[6 \[Degree]], -Sin[6 \[Degree]], 0},
 
    {Sin[6 \[Degree]], Cos[6 \[Degree]], 0},
 
    {0, 0, 1}
 
  } );
 
rFromXtoY = ( {
 
    {Cos[6 \[Degree]], Sin[6 \[Degree]], 0},
 
    {-Sin[6 \[Degree]], Cos[6 \[Degree]], 0},
 
    {0, 0, 1}
 
  } );
 
yxPoints = constant\[Theta];
 
constant\[Theta]yx = constant\[Theta];
 
constant\[Theta]yxRotated = constant\[Theta];
 
constant\[Theta]xyz = constant\[Theta];
 
constant\[Theta]xyzRotated = constant\[Theta];
 
  
RowLengths = Table[{Nothing}, {i, 1, 36}];
+
[[File:part1d2.png]]
For[rows = 1, rows < 37, rows++,
 
  RowLengths[[rows]] = Length[constant\[Theta][[rows]]];
 
  For[columns = 1, columns < RowLengths[[rows]] + 1, columns++,
 
  \[Theta] = rows + 4;
 
  \[Phi] = constant\[Theta][[rows, columns, 1]];
 
  constant\[Theta]yx[[rows, columns]] = {y,
 
    Sqrt[a^2 (1 - y^2/b^2)] - \[CapitalDelta]a};
 
  constant\[Theta]xyz[[rows,
 
    columns]] = {constant\[Theta]yx[[rows, columns, 2]],
 
    constant\[Theta]yx[[rows, columns, 1]], 0};
 
  If[constant\[Theta][[rows, columns, 1]] < 0,
 
    constant\[Theta]yx[[rows, columns,
 
      1]] = -constant\[Theta]yx[[rows, columns, 1]];
 
    constant\[Theta]xyz[[rows, columns,
 
      2]] = -constant\[Theta]xyz[[rows, columns, 2]];
 
    ];
 
  constant\[Theta]xyzRotated[[rows, columns]] =
 
    rFromYtoX.{constant\[Theta]xyz[[rows, columns, 1]],
 
      constant\[Theta]xyz[[rows, columns, 2]],
 
      constant\[Theta]xyz[[rows, columns, 3]]};
 
 
 
  constant\[Theta]yxRotated[[rows,
 
    columns]] = {constant\[Theta]xyzRotated[[rows, columns, 2]],
 
    constant\[Theta]xyzRotated[[rows, columns, 1]]};
 
  yxPoints[[rows, columns]] = {y,
 
    Sqrt[a^2 (1 - y^2/b^2)] - \[CapitalDelta]a,
 
    constant\[Theta][[rows, columns, 1]],
 
    constant\[Theta][[rows, columns, 2]]};
 
 
 
  ]
 
  ];
 
ClearAll[\[Theta], \[Phi]];
 
DesiredyxPoints = Desiredconstant\[Theta];
 
Desiredconstant\[Theta]yx = Desiredconstant\[Theta];
 
Desiredconstant\[Theta]yxRotated = Desiredconstant\[Theta];
 
Desiredconstant\[Theta]xyz = Desiredconstant\[Theta];
 
Desiredconstant\[Theta]xyzRotated = Desiredconstant\[Theta];
 
  
DesiredRowLengths = Table[{Nothing}, {i, 1, 36}];
 
For[rows = 1, rows < 37, rows++,
 
  DesiredRowLengths[[rows]] =
 
  Length[Desiredconstant\[Theta][[rows]]];
 
  For[columns = 1, columns < DesiredRowLengths[[rows]] + 1,
 
  columns++,
 
  \[Theta] = rows + 4;
 
  \[Phi] = Desiredconstant\[Theta][[rows, columns, 1]];
 
  Desiredconstant\[Theta]yx[[rows, columns]] = {y,
 
    Sqrt[a^2 (1 - y^2/b^2)] - \[CapitalDelta]a};
 
  Desiredconstant\[Theta]xyz[[rows,
 
      columns]] = {Desiredconstant\[Theta]yx[[rows, columns, 2]],
 
    Desiredconstant\[Theta]yx[[rows, columns, 1]], 0};
 
  If[Desiredconstant\[Theta][[rows, columns, 1]] < 0,
 
    Desiredconstant\[Theta]yx[[rows, columns,
 
      1]] = -Desiredconstant\[Theta]yx[[rows, columns, 1]];
 
    Desiredconstant\[Theta]xyz[[rows, columns,
 
      2]] = -Desiredconstant\[Theta]xyz[[rows, columns, 2]];
 
    ];
 
  Desiredconstant\[Theta]xyzRotated[[rows, columns]] =
 
    rFromYtoX.{Desiredconstant\[Theta]xyz[[rows, columns, 1]],
 
      Desiredconstant\[Theta]xyz[[rows, columns, 2]],
 
      Desiredconstant\[Theta]xyz[[rows, columns, 3]]};
 
 
 
  Desiredconstant\[Theta]yxRotated[[rows,
 
      columns]] = {Desiredconstant\[Theta]xyzRotated[[rows, columns,
 
      2]], Desiredconstant\[Theta]xyzRotated[[rows, columns, 1]]};
 
  DesiredyxPoints[[rows, columns]] = {y,
 
    Sqrt[a^2 (1 - y^2/b^2)] - \[CapitalDelta]a,
 
    Desiredconstant\[Theta][[rows, columns, 1]],
 
    Desiredconstant\[Theta][[rows, columns, 2]]};
 
 
 
  ]
 
  ];
 
ClearAll[\[Theta], \[Phi]]
 
</pre>
 
  
  
The parameter's range changes from the DC frame with 0<t<2\[Pi], since
+
----
  
<center><math>x(t=0)=a\ cos\ t = a\ cos\ 0 =a = a\ cos\ 2 \Pi =x(t=2 \Pi)</math></center>
 
  
  
<center><math>y(t=0)=b\ sin\ t = b\ sin\ 0 = 0 = b\ sin\ 2 \Pi = y(t=2 \Pi)</math></center>
+
<center><math>\underline{\textbf{Navigation}}</math>
+
 
In the frame of the wires, the x'' axis no longer is aligned with the semi-major axis, therefore for <math>\theta=40^\{circ}, \phi=0, t=0 </math> in the DC frame
+
[[The_Ellipse|<math>\vartriangleleft </math>]]
 +
[[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\triangle </math>]]
 +
[[Parameterizing_the_Ellipse_Equation|<math>\vartriangleright </math>]]
 +
 
 +
</center>

Latest revision as of 20:34, 15 May 2018