Difference between revisions of "Left Hand Wall"
Jump to navigation
Jump to search
| (13 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
| + | <center><math>\underline{\textbf{Navigation}}</math> | ||
| + | |||
| + | [[Right_Hand_Wall|<math>\vartriangleleft </math>]] | ||
| + | [[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\triangle </math>]] | ||
| + | [[The_Ellipse|<math>\vartriangleright </math>]] | ||
| + | |||
| + | </center> | ||
| + | |||
| + | |||
<center><math>x=-y\ cot\ 29.5^{\circ}+0.09156</math></center> | <center><math>x=-y\ cot\ 29.5^{\circ}+0.09156</math></center> | ||
Parameterizing this | Parameterizing this | ||
| − | <center><math>r\mapsto {-y\ cot\ 29.5^{\circ}+0.09156,y,0}</math></center> | + | <center><math>r\mapsto \{-y\ cot\ 29.5^{\circ}+0.09156,y,0 \}</math></center> |
| − | <center><math>t\mapsto {t\ cos\ 29.5^{\circ}+0.09156,-t\ sin\ 29.5^{\circ},0}</math></center> | + | <center><math>t\mapsto \{t\ cos\ 29.5^{\circ}+0.09156,-t\ sin\ 29.5^{\circ},0 \}</math></center> |
| Line 56: | Line 65: | ||
0.09156\ cos\ 6^{\circ}+t\ cos\ 6^{\circ}cos\ 29.5^{\circ}+t\ sin\ 6^{\circ}sin\ 29.5^{\circ} \\ | 0.09156\ cos\ 6^{\circ}+t\ cos\ 6^{\circ}cos\ 29.5^{\circ}+t\ sin\ 6^{\circ}sin\ 29.5^{\circ} \\ | ||
-t\ cos\ 6^{\circ}sin\ 29.5^{\circ}+0.09156\ sin\ 6^{\circ}+t\ cos\ 29.5^{\circ}sin\ 6^{\circ} \\ | -t\ cos\ 6^{\circ}sin\ 29.5^{\circ}+0.09156\ sin\ 6^{\circ}+t\ cos\ 29.5^{\circ}sin\ 6^{\circ} \\ | ||
| + | 0 | ||
| + | \end{bmatrix}</math></center> | ||
| + | |||
| + | |||
| + | <center><math> | ||
| + | \begin{bmatrix} | ||
| + | x'' \\ | ||
| + | y'' \\ | ||
| + | z'' | ||
| + | \end{bmatrix}= | ||
| + | \begin{bmatrix} | ||
| + | 0.09156\ cos\ 6^{\circ}+t\ (cos\ 6^{\circ}cos\ 29.5^{\circ}+ sin\ 6^{\circ}sin\ 29.5^{\circ}) \\ | ||
| + | 0.09156\ sin\ 6^{\circ}-t\ (cos\ 6^{\circ}sin\ 29.5^{\circ}-sin\ 6^{\circ} cos\ 29.5^{\circ}) \\ | ||
| + | 0 | ||
| + | \end{bmatrix}</math></center> | ||
| + | |||
| + | |||
| + | <center><math> | ||
| + | \begin{bmatrix} | ||
| + | x'' \\ | ||
| + | y'' \\ | ||
| + | z'' | ||
| + | \end{bmatrix}= | ||
| + | \begin{bmatrix} | ||
| + | 0.09156\ cos\ 6^{\circ}+t\ cos\ (6^{\circ} -29.5^{\circ}) \\ | ||
| + | 0.09156\ sin\ 6^{\circ}+t\ sin\ (6^{\circ}-29.5^{\circ}) \\ | ||
| + | 0 | ||
| + | \end{bmatrix}</math></center> | ||
| + | |||
| + | |||
| + | <center><math> | ||
| + | \begin{bmatrix} | ||
| + | x'' \\ | ||
| + | y'' \\ | ||
| + | z'' | ||
| + | \end{bmatrix}= | ||
| + | \begin{bmatrix} | ||
| + | 0.09156\ cos\ 6^{\circ}+t\ cos\ (-23.5^{\circ}) \\ | ||
| + | 0.09156\ sin\ 6^{\circ}+t\ sin\ (-23.5^{\circ}) \\ | ||
| + | 0 | ||
| + | \end{bmatrix}</math></center> | ||
| + | |||
| + | |||
| + | <center><math> | ||
| + | \begin{bmatrix} | ||
| + | x'' \\ | ||
| + | y'' \\ | ||
| + | z'' | ||
| + | \end{bmatrix}= | ||
| + | \begin{bmatrix} | ||
| + | 0.09156\ cos\ 6^{\circ}+t\ cos\ 23.5^{\circ} \\ | ||
| + | 0.09156\ sin\ 6^{\circ}-t\ sin\ 23.5^{\circ} \\ | ||
0 | 0 | ||
\end{bmatrix}</math></center> | \end{bmatrix}</math></center> | ||
| Line 83: | Line 144: | ||
<center><math>x''=-2.299843\ y''+.113069</math></center> | <center><math>x''=-2.299843\ y''+.113069</math></center> | ||
| + | |||
| + | |||
| + | |||
| + | [[File:leftwall.png]] | ||
| + | |||
| + | |||
| + | ---- | ||
| + | |||
| + | |||
| + | <center><math>\underline{\textbf{Navigation}}</math> | ||
| + | |||
| + | [[Right_Hand_Wall|<math>\vartriangleleft </math>]] | ||
| + | [[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\triangle </math>]] | ||
| + | [[The_Ellipse|<math>\vartriangleright </math>]] | ||
| + | |||
| + | </center> | ||
Latest revision as of 20:33, 15 May 2018
Parameterizing this
where the negative sign is applied to the sine function by the even odd relationships of cosine and sine, i.e. ( sin(-t)=-sin(t), cos(-t)=cos(t)) and the fact that the y component is in the 4th quadrant.
Using the equation for y we can solve for t
Substituting this into the expression for x
