Difference between revisions of "Left Hand Wall"
Jump to navigation
Jump to search
(18 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | <center><math>\underline{\textbf{Navigation}}</math> | ||
+ | |||
+ | [[Right_Hand_Wall|<math>\vartriangleleft </math>]] | ||
+ | [[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\triangle </math>]] | ||
+ | [[The_Ellipse|<math>\vartriangleright </math>]] | ||
+ | |||
+ | </center> | ||
+ | |||
+ | |||
<center><math>x=-y\ cot\ 29.5^{\circ}+0.09156</math></center> | <center><math>x=-y\ cot\ 29.5^{\circ}+0.09156</math></center> | ||
Parameterizing this | Parameterizing this | ||
− | <center><math>r\mapsto {-y\ cot\ 29.5^{\circ}+0.09156,y,0}</math></center> | + | <center><math>r\mapsto \{-y\ cot\ 29.5^{\circ}+0.09156,y,0 \}</math></center> |
− | <center><math>t\mapsto {t\ cos\ 29.5^{\circ}+0.09156,-t\ sin\ 29.5^{\circ},0}</math></center> | + | <center><math>t\mapsto \{t\ cos\ 29.5^{\circ}+0.09156,-t\ sin\ 29.5^{\circ},0 \}</math></center> |
where the negative sign is applied to the sine function by the even odd relationships of cosine and sine, i.e. ( sin(-t)=-sin(t), cos(-t)=cos(t)) and the fact that the y'' component is in the 4th quadrant. | where the negative sign is applied to the sine function by the even odd relationships of cosine and sine, i.e. ( sin(-t)=-sin(t), cos(-t)=cos(t)) and the fact that the y'' component is in the 4th quadrant. | ||
− | + | <center><math> | |
− | y'' | + | \begin{bmatrix} |
+ | x'' \\ | ||
+ | y'' \\ | ||
z'' | z'' | ||
− | + | \end{bmatrix}= | |
− | + | \begin{bmatrix} | |
− | sin 6\ | + | cos\ 6^{\circ} & -sin\ 6^{\circ} & 0 \\ |
− | 0 0 1 | + | sin\ 6^{\circ} & cos\ 6^{\circ} & 0 \\ |
− | + | 0 & 0 & 1 | |
− | + | \end{bmatrix} \cdot | |
− | y' | + | \begin{bmatrix} |
+ | x' \\ | ||
+ | y' \\ | ||
z' | z' | ||
+ | \end{bmatrix}</math></center> | ||
+ | |||
− | + | <center><math> | |
− | + | \begin{bmatrix} | |
− | + | x'' \\ | |
− | y'' | + | y'' \\ |
z'' | z'' | ||
− | + | \end{bmatrix}= | |
− | + | \begin{bmatrix} | |
− | sin 6\ | + | cos\ 6^{\circ} & -sin\ 6^{\circ} & 0 \\ |
− | 0 0 1 | + | sin\ 6^{\circ} & cos\ 6^{\circ} & 0 \\ |
− | + | 0 & 0 & 1 | |
− | + | \end{bmatrix} \cdot | |
− | -t sin | + | \begin{bmatrix} |
+ | t\ cos\ 29.5^{\circ}+0.09156 \\ | ||
+ | -t\ sin\ 29.5^{\circ} \\ | ||
0 | 0 | ||
+ | \end{bmatrix}</math></center> | ||
− | |||
− | + | <center><math> | |
− | y'' | + | \begin{bmatrix} |
+ | x'' \\ | ||
+ | y'' \\ | ||
z'' | z'' | ||
− | + | \end{bmatrix}= | |
− | + | \begin{bmatrix} | |
− | -t cos 6 \ | + | 0.09156\ cos\ 6^{\circ}+t\ cos\ 6^{\circ}cos\ 29.5^{\circ}+t\ sin\ 6^{\circ}sin\ 29.5^{\circ} \\ |
+ | -t\ cos\ 6^{\circ}sin\ 29.5^{\circ}+0.09156\ sin\ 6^{\circ}+t\ cos\ 29.5^{\circ}sin\ 6^{\circ} \\ | ||
0 | 0 | ||
+ | \end{bmatrix}</math></center> | ||
− | |||
− | + | <center><math> | |
− | y'' | + | \begin{bmatrix} |
+ | x'' \\ | ||
+ | y'' \\ | ||
z'' | z'' | ||
− | + | \end{bmatrix}= | |
− | + | \begin{bmatrix} | |
− | 0.09156 sin 6 \ | + | 0.09156\ cos\ 6^{\circ}+t\ (cos\ 6^{\circ}cos\ 29.5^{\circ}+ sin\ 6^{\circ}sin\ 29.5^{\circ}) \\ |
+ | 0.09156\ sin\ 6^{\circ}-t\ (cos\ 6^{\circ}sin\ 29.5^{\circ}-sin\ 6^{\circ} cos\ 29.5^{\circ}) \\ | ||
0 | 0 | ||
+ | \end{bmatrix}</math></center> | ||
− | |||
− | + | <center><math> | |
− | y'' | + | \begin{bmatrix} |
+ | x'' \\ | ||
+ | y'' \\ | ||
z'' | z'' | ||
− | + | \end{bmatrix}= | |
− | + | \begin{bmatrix} | |
− | 0.09156 sin 6 \ | + | 0.09156\ cos\ 6^{\circ}+t\ cos\ (6^{\circ} -29.5^{\circ}) \\ |
+ | 0.09156\ sin\ 6^{\circ}+t\ sin\ (6^{\circ}-29.5^{\circ}) \\ | ||
0 | 0 | ||
+ | \end{bmatrix}</math></center> | ||
− | |||
− | + | <center><math> | |
− | y'' | + | \begin{bmatrix} |
+ | x'' \\ | ||
+ | y'' \\ | ||
z'' | z'' | ||
− | + | \end{bmatrix}= | |
− | + | \begin{bmatrix} | |
− | 0.09156 sin 6 \ | + | 0.09156\ cos\ 6^{\circ}+t\ cos\ (-23.5^{\circ}) \\ |
+ | 0.09156\ sin\ 6^{\circ}+t\ sin\ (-23.5^{\circ}) \\ | ||
0 | 0 | ||
+ | \end{bmatrix}</math></center> | ||
− | |||
− | + | <center><math> | |
− | y'' | + | \begin{bmatrix} |
+ | x'' \\ | ||
+ | y'' \\ | ||
z'' | z'' | ||
− | + | \end{bmatrix}= | |
− | + | \begin{bmatrix} | |
− | 0.09156 sin 6 \ | + | 0.09156\ cos\ 6^{\circ}+t\ cos\ 23.5^{\circ} \\ |
+ | 0.09156\ sin\ 6^{\circ}-t\ sin\ 23.5^{\circ} \\ | ||
0 | 0 | ||
− | + | \end{bmatrix}</math></center> | |
− | |||
Line 113: | Line 144: | ||
<center><math>x''=-2.299843\ y''+.113069</math></center> | <center><math>x''=-2.299843\ y''+.113069</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | [[File:leftwall.png]] | ||
+ | |||
+ | |||
+ | ---- | ||
+ | |||
+ | |||
+ | <center><math>\underline{\textbf{Navigation}}</math> | ||
+ | |||
+ | [[Right_Hand_Wall|<math>\vartriangleleft </math>]] | ||
+ | [[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\triangle </math>]] | ||
+ | [[The_Ellipse|<math>\vartriangleright </math>]] | ||
+ | |||
+ | </center> |
Latest revision as of 20:33, 15 May 2018
Parameterizing this
where the negative sign is applied to the sine function by the even odd relationships of cosine and sine, i.e. ( sin(-t)=-sin(t), cos(-t)=cos(t)) and the fact that the y component is in the 4th quadrant.
Using the equation for y we can solve for t
Substituting this into the expression for x