Difference between revisions of "Right Hand Wall"

From New IAC Wiki
Jump to navigation Jump to search
 
(8 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
<center><math>\underline{\textbf{Navigation}}</math>
 +
 +
[[The_Wires|<math>\vartriangleleft </math>]]
 +
[[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\triangle </math>]]
 +
[[Left_Hand_Wall|<math>\vartriangleright </math>]]
 +
 +
</center>
 +
 +
 
This same process can be applied to the side walls for the detector.  For the sidewalls, we have approximated them as lines following the equation
 
This same process can be applied to the side walls for the detector.  For the sidewalls, we have approximated them as lines following the equation
  
Line 81: Line 90:
 
Substituting this into the expression for x''
 
Substituting this into the expression for x''
  
<center><math>x''=0.09156cos 6^{\circ}+t (cos 6^{\circ}cos 29.5^{\circ}- sin 6^{\circ} sin 29.5^{\circ})=0.09156cos 6 ^{\circ}+\frac{y''-0.09156  sin 6^{\circ}}{sin 6^{\circ} cos 29.5^{\circ}+cos 6^{\circ}sin 29.5^{\circ}} (cos 6^{\circ}cos 29.5^{\circ}- sin 6^{\circ} sin 29.5^{\circ})</math></center>
+
<center><math>x''=0.09156\ cos\ 6^{\circ}+t\ (cos\ 6^{\circ}cos\ 29.5^{\circ}- sin\ 6^{\circ} sin\ 29.5^{\circ})</math></center>
 +
 
 +
 
 +
<center><math>x''=0.09156\ cos\ 6 ^{\circ}+\frac{y''-0.09156\ sin\ 6^{\circ}}{sin\ 6^{\circ} cos\ 29.5^{\circ}+cos\ 6^{\circ}sin\ 29.5^{\circ}} (cos\ 6^{\circ}cos\ 29.5^{\circ}- sin\ 6^{\circ} sin\ 29.5^{\circ})</math></center>
  
  
Line 102: Line 114:
  
  
<pre>
+
[[File:rwall.png]]
rightRotated =
+
 
  ContourPlot[x2 == 1.401949 y + 0.077641, {y, -1, 1}, {x2, 0, 1.8},
+
 
  Frame -> {True, True, False, False},
+
----
      PlotLabel ->  
+
 
    "Right side limit of DC as a function of X and Y",
+
 
  FrameLabel -> {"y (meters)", "x (meters)"},
+
<center><math>\underline{\textbf{Navigation}}</math>
  ContourStyle -> Black,
+
 
      PlotLegends -> Automatic];
+
[[The_Wires|<math>\vartriangleleft </math>]]
</pre>
+
[[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\triangle </math>]]
 +
[[Left_Hand_Wall|<math>\vartriangleright </math>]]
 +
 
 +
</center>

Latest revision as of 20:33, 15 May 2018

[math]\underline{\textbf{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]


This same process can be applied to the side walls for the detector. For the sidewalls, we have approximated them as lines following the equation

[math]x=cot\ 29.5^{\circ}\ y + 0.09156[/math]

Parameterizing this

[math]r \mapsto {y\ cot\ 29.5^{\circ} + 0.09156, y, 0}[/math]


[math]t \mapsto {t\ cos\ 29.5^{\circ} + 0.09156, t\ sin\ 29.5^{\circ} , 0}[/math]


[math]\begin{bmatrix} x'' \\ y'' \\ z'' \end{bmatrix}= \begin{bmatrix} cos\ 6^{\circ} & -sin\ 6^{\circ} & 0 \\ sin\ 6^{\circ} & cos\ 6^{\circ}& 0 \\ 0 & 0 & 1 \end{bmatrix}\cdot \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}[/math]



[math]\begin{bmatrix} x'' \\ y'' \\ z'' \end{bmatrix}= \begin{bmatrix} cos\ 6^{\circ} & -sin\ 6^{\circ} & 0 \\ sin\ 6^{\circ} & cos\ 6^{\circ}& 0 \\ 0 & 0 & 1 \end{bmatrix}\cdot \begin{bmatrix} t\ cos\ 29.5^{\circ}+0.09156 \\ t sin 29.5^{\circ}\\ 0 \end{bmatrix}[/math]



[math]\begin{bmatrix} x'' \\ y'' \\ z'' \end{bmatrix}= \begin{bmatrix} 0.09156\ cos\ 6^{\circ}+t\ cos\ 6 ^{\circ}cos\ 29.5^{\circ}-t\ sin\ 6 ^{\circ}sin\ 29.5^{\circ} \\ t\ cos\ 6 ^{\circ}sin\ 29.5^{\circ}+0.09156\ sin\ 6^{\circ}+t\ cos\ 29.5^{\circ}sin\ 6^{\circ} \\ 0 \end{bmatrix}[/math]


[math]\begin{bmatrix} x'' \\ y'' \\ z'' \end{bmatrix}= \begin{bmatrix} 0.09156\ cos\ 6^{\circ}+t\ (cos\ 6^{\circ}cos\ 29.5^{\circ}- sin\ 6 ^{\circ}sin\ 29.5^{\circ}) \\ 0.09156\ sin\ 6 ^{\circ}+t\ (sin\ 6^{\circ} cos\ 29.5^{\circ}+cos\ 6 ^{\circ}sin\ 29.5^{\circ}) \\ 0 \end{bmatrix}[/math]

Using the equation for y we can solve for t

[math]y''=0.09156\ sin\ 6^{\circ}+t (sin\ 6^{\circ} cos\ 29.5^{\circ}+cos\ 6 ^{\circ}sin\ 29.5^{\circ}) \Rightarrow t=\frac{y''-0.09156\ sin\ 6 ^{\circ}}{sin\ 6^{\circ} cos\ 29.5^{\circ}+cos\ 6^{\circ}sin\ 29.5^{\circ}}[/math]

Substituting this into the expression for x

[math]x''=0.09156\ cos\ 6^{\circ}+t\ (cos\ 6^{\circ}cos\ 29.5^{\circ}- sin\ 6^{\circ} sin\ 29.5^{\circ})[/math]


[math]x''=0.09156\ cos\ 6 ^{\circ}+\frac{y''-0.09156\ sin\ 6^{\circ}}{sin\ 6^{\circ} cos\ 29.5^{\circ}+cos\ 6^{\circ}sin\ 29.5^{\circ}} (cos\ 6^{\circ}cos\ 29.5^{\circ}- sin\ 6^{\circ} sin\ 29.5^{\circ})[/math]


[math]x''=0.09156\ cos\ 6^{\circ}+\frac{y''-0.09156\ sin\ 6^{\circ}}{sin\ 6^{\circ} cos\ 29.5^{\circ}+cos\ 6 ^{\circ}sin\ 29.5^{\circ}} (cos\ 6 ^{\circ}cos\ 29.5^{\circ}- sin\ 6^{\circ}sin\ 29.5^{\circ})[/math]


[math]x''=(0.994522)0.09156+\frac{y''-0.09156 (0.104528) }{0.0909769+.489726} (0.865588- 0.051472)[/math]


[math]x''=(0.091058)+\frac{y''-.0095706 }{0.580703} (.814116)[/math]


[math]x''=(0.091058)+(y''-.0095706 ) (1.401949)[/math]


[math]x''=1.401949\ y''-.013417+.091058[/math]


[math]x''=1.401949\ y''+.077641[/math]


Rwall.png




[math]\underline{\textbf{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]