Difference between revisions of "Mathematica Simulation"

From New IAC Wiki
Jump to navigation Jump to search
(Blanked the page)
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
==Setting up Mathematica for DC Theta-Phi Isotropic Cone==
 
  
 
We can define the constraints of the plane the DC is in
 
 
<pre>
 
right = ContourPlot[
 
  x2 == Cot[29.5 \[Degree]] y + .09156, {y, -1, 1}, {x2, 0, 1.8},
 
  Frame -> {True, True, False, False},
 
  PlotLabel -> "Right side limit of DC as a function of X and Y",
 
  FrameLabel -> {"y (meters)", "x (meters)"}, ContourStyle -> Black,
 
  PlotLegends -> Automatic];
 
 
left = ContourPlot[
 
  x2 == -Cot[29.5 \[Degree]] y + .09156, {y, -1, 1}, {x2, 0, 1.8},
 
  Frame -> {True, True, False, False},
 
  PlotLabel -> "Right side limit of DC as a function of X and Y",
 
  FrameLabel -> {"y (meters)", "x (meters)"}, ContourStyle -> Black,
 
  PlotLegends -> Automatic];
 
 
</pre>
 
 
 
We can define the x coordinate of the wires as they cross the midpoint plane as shown earlier.
 
 
<pre>
 
x0forWires[number_] := .23168 + .01337*(number);
 
</pre>
 
 
 
We can define the point midway between two parallel lines as the point where one wire is recorded versus its next highest neighbor
 
 
<pre>
 
x0forWireMiddles[
 
  number_] := ((.23168 + .01337*(number)) + (.23168 + .01337*(number \
 
+ 1)))/2;
 
</pre>
 
 
All of the conditions dependent on \[Theta] and \[Phi]
 
 
<pre>
 
 
\[CapitalDelta]a :=
 
  FullSimplify[(R Sin[\[Theta] \[Degree]])/
 
    2 (Csc[65 \[Degree] - \[Theta] \[Degree]] -
 
      Csc[115 \[Degree] - \[Theta] \[Degree]]), \[Theta] > 0];
 
e := Sin[25 \[Degree]]/Cos[\[Theta] \[Degree]];
 
a := FullSimplify[(R Sin[\[Theta] \[Degree]])/
 
    2 (Csc[65 \[Degree] - \[Theta] \[Degree]] +
 
      Csc[115 \[Degree] - \[Theta] \[Degree]]), \[Theta] > 0];
 
rD1 := Simplify[(a e - \[CapitalDelta]a) Tan[
 
    65 \[Degree]] Cos[\[Theta] \[Degree]], \[Theta] > 0];
 
rD2 := Simplify[(a e + \[CapitalDelta]a) Tan[
 
    65 \[Degree]] Cos[\[Theta] \[Degree]], \[Theta] > 0];
 
xD1 := Simplify[rD1 Cos[\[Phi] \[Degree]]];
 
yD1 := Simplify[rD1 Sin[\[Phi] \[Degree]]];
 
zD1 := Simplify[rD1 Cot[\[Theta] \[Degree]], \[Theta] > 0];
 
xD2 := Simplify[rD2 Cos[\[Phi] \[Degree]], \[Theta] > 0];
 
yD2 := Simplify[rD2 Sin[\[Phi] \[Degree]], \[Theta] > 0];
 
zD2 := Simplify[rD2 Cot[\[Theta] \[Degree]], \[Theta] > 0];
 
xP := Simplify[(R Cos[\[Phi] \[Degree]])/(Cot[\[Theta] \[Degree]] +
 
      Cos[\[Phi] \[Degree]] Cot[65 \[Degree]]), \[Theta] > 0];
 
yP := Simplify[(R Sin[\[Phi] \[Degree]])/(Cot[\[Theta] \[Degree]] +
 
      Cos[\[Phi] \[Degree]] Cot[65 \[Degree]]), \[Theta] > 0];
 
zP := Simplify[(R Cot[\[Theta] \[Degree]])/(Cot[\[Theta] \[Degree]] +
 
      Cos[\[Phi] \[Degree]] Cot[65 \[Degree]]), \[Theta] > 0];
 
x1 := Simplify[(rD2^2 - rD1^2 +
 
      Cot[\[Theta] \[Degree]]^2 (rD2^2 - rD1^2) - 2 xP (xD2 - xD1) -
 
      2 yP (yD2 - yD1) - 2 zP (zD2 - zD1))/(4 a e) - a e, \[Theta] >
 
    0];
 
x := Simplify[x1 - \[CapitalDelta]a + a e, \[Theta] > 0];
 
xCenter := x + \[CapitalDelta]a;
 
n := -957.412/(Tan[\[Theta] \[Degree]] + 2.14437) + 430.626;
 
D2P := Simplify[((xD2 - xP)^2 + (yD2 - yP)^2 + (zD2 -
 
      zP )^2)^.5, \[Theta] > 0] // N
 
D1P := Simplify[((xP - xD1)^2 + (yP - yD1)^2 + (zP -
 
        zD1)^2)^.5, \[Theta] > 0] // N;
 
y := Simplify[(D1P^2 - x1^2)^.5, \[Theta] > 0] // N;
 
b := Simplify[a Sqrt[1 - e^2], \[Theta] > 0] // N;
 
R = 2.52934271645;
 
</pre>
 

Latest revision as of 18:04, 19 April 2017