Difference between revisions of "DV Calculations of 4-momentum components"

From New IAC Wiki
Jump to navigation Jump to search
(Replaced content with " ===Verification=== Verification of Relativistic Components ===Conclusion=== Conclusion ---- [[DV_RunGroupC_Mol…")
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
=Calculations of 4-momentum components=
 
  
 
==Initial Conditions==
 
 
 
 
===Lab Frame===
 
 
<center>[[File:lab.png | 400 px]]</center>
 
<center>'''Figure 1: Definition of variables in the Lab Frame '''</center>
 
 
 
 
Begining with the assumption that the incoming electron, p<sub>1</sub>,  has momentum of 11000 MeV in the positive z direction.
 
 
 
<center><math>\vec p_{1(z)}\equiv \vec p_{1}=11000 MeV \widehat {z}</math></center>
 
 
 
We can also assume the Moller electron, p<sub>2</sub>, is initially at rest
 
 
 
<center><math>\vec p_{2}\equiv 0</math></center>
 
 
 
This gives the total energy in this frame as
 
 
 
<center><math>E\equiv E_1+E_2</math></center>
 
 
 
where,
 
<center><math>E\equiv \sqrt{p^2+m^2}</math></center>
 
 
 
 
This gives,
 
<center><math>E\equiv \sqrt{(p_{1})^2+(m_{1})^2}+m_{2}</math></center>
 
 
 
 
{| class="wikitable" align="center"
 
| style="background: gray"      | <math>\Longrightarrow E\equiv \sqrt{(11000 MeV)^2+(.511 MeV)^2}+.511MeV\approx 11000.511 MeV</math>
 
|}
 
 
===Center of Mass Frame===
 
====4-Momentum Invariants====
 
 
<center>[[File:CM.png |400 px]]</center>
 
<center>'''Figure 2: Definition of variables in the Center of Mass Frame'''</center>
 
 
 
Starting with the definition for the total relativistic energy:
 
 
 
<center><math>E^2\equiv p^2c^2+m^2c^4</math></center>
 
 
 
<center><math>\Longrightarrow  {E^2}-p^2c^2=(mc^2)^2</math></center>
 
Since we can assume that the frame of reference is an inertial frame, it moves at a constant velocity, the mass should remain constant. 
 
 
 
<center><math>\frac {d\vec p}{dt}=0\Rightarrow \frac{d(m\vec v)}{dt}=\frac{c\ dm}{dt}\Rightarrow \frac{dm}{dt}=0</math></center>
 
 
 
<center><math> \therefore m=const</math></center>
 
 
 
We can use 4-momenta vectors, i.e. <math>{\mathbf P}\equiv \left(\begin{matrix} E\\ p_x \\ p_y \\ p_z \end{matrix} \right)=\left(\begin{matrix} E\\ \vec p \end{matrix} \right)</math> ,with c=1, to describe the variables in the CM Frame.
 
 
 
 
Using the fact that the scalar product of a 4-momenta with itself,
 
 
 
 
<center><math>{\mathbf P_1}\cdot {\mathbf P^1}=P_{\mu}g_{\mu \nu}P^{\nu}=\left(\begin{matrix} E\\ p_x \\ p_y \\ p_z \end{matrix} \right)\cdot \left( \begin{matrix}1 & 0 & 0 & 0\\0 & -1 & 0 & 0\\0 & 0 & -1 & 0\\0 &0 & 0 &-1\end{matrix} \right)\cdot \left(\begin{matrix} E & p_x & p_y & p_z \end{matrix} \right)</math></center>
 
 
 
 
<center><math>{\mathbf P_1}\cdot {\mathbf P^1}=E_1E_1-\vec p_1\cdot \vec p_1 =m_{1}^2=s</math></center>
 
 
 
is invariant. 
 
 
 
Using this notation, the sum of two 4-momenta forms a 4-vector as well
 
 
<center><math>{\mathbf P_1}+ {\mathbf P_2}= \left( \begin{matrix}E_1+E_2\\\vec p_1 +\vec p_2 \end{matrix} \right)= {\mathbf P}</math></center>
 
 
The length of this four-vector is an invariant as well
 
 
<center><math>{\mathbf P^2}=({\mathbf P_1}+{\mathbf P_2})^2=(E_1+E_2)^2-(\vec p_1 +\vec p_2 )^2=(m_1+m_2)^2=s</math></center>
 
 
====Equal masses====
 
For incoming electrons moving only in the z-direction, we can write
 
 
 
<center><math>{\mathbf P_1}+ {\mathbf P_2}= \left( \begin{matrix}E_1+E_2\\ 0 \\ 0 \\ p_{1(z)}+p_{2(z)}\end{matrix} \right)={\mathbf P}</math></center>
 
 
 
 
 
 
We can perform a Lorentz transformation to the Center of Mass frame, with zero total momentum
 
 
 
<center><math>\left( \begin{matrix}E^*_{1}+E^*_{2}\\ 0 \\ 0 \\ 0\end{matrix} \right)=\left(\begin{matrix}\gamma^* & 0 & 0 & -\beta^* \gamma^*\\0 & 1 & 0 & 0 \\ 0 & 0 & 1 &0 \\ -\beta^* \gamma^* & 0 & 0 & \gamma^* \end{matrix} \right) . \left( \begin{matrix}E_{1}+E_{2}\\ 0 \\ 0 \\ p_{1(z)}+p_{2(z)}\end{matrix} \right)</math></center>
 
 
Without knowing the values for gamma or beta, we can utalize the fact that lengths of the two 4-momenta are invariant
 
 
<center><math>s={\mathbf P^*}^2=(E^*_{1}+E^*_{2})^2-(\vec p\ ^*_{1}+\vec p\ ^*_{2})^2=(m_{1}^*+m_{2}^*)^2</math></center>
 
 
 
<center><math>s={\mathbf P}^2=(E_{1}+E_{2})^2-(\vec p_{1}+\vec p_{2})^2=(m_{1}+m_{2})^2</math></center>
 
 
 
 
This gives,
 
<center><math>\Longrightarrow (m_{1}^*+m_{2}^*)^2=(m_{1}+m_{2})^2</math></center>
 
 
 
Using the fact that
 
 
<center><math>\begin{cases}
 
m_{1}=m_{2} \\
 
m_{1}^*=m_{2}^*
 
\end{cases}</math></center>
 
since the rest mass energy of the electrons remains the same in inertial frames.
 
 
 
Substituting, we find
 
<center><math>(m_{1}^*+m_{1}^*)^2=(m_{1}+m_{1})^2</math></center>
 
 
 
 
<center><math>2m_{1}^*=2m_{1}</math></center>
 
 
 
 
<center><math>m_{1}^*=m_{1}</math></center>
 
 
 
 
<center><math>\Longrightarrow m_{1}=m^*_{1}\ ; m_{2}=m^*_{2}</math></center>
 
 
 
This confirms that the mass remains constant between the frames of reference.
 
 
 
 
 
====Total Energy in CM====
 
 
Setting the lengths of the 4-momenta equal to each other,
 
 
<center><math>{\mathbf P^*}^2={\mathbf P}^2</math></center>
 
 
 
 
we can use this for the collision of two particles of mass m.  Since the total momentum is zero in the Center of Mass frame, we can express total energy in the center of mass frame as
 
 
<center><math>(E^*_{1}+E^*_{2})^2-(\vec p\ ^*_{1}+\vec p\ ^*_{2})^2=s=(E_{1}+E_{2})^2-(\vec{p_{1}}+\vec p_{2})^2</math></center>
 
 
 
<center><math>(E^*)^2-(\vec p\ ^*)^2=(E_{1}+E_{2})^2-(\vec{p_{1}}+\vec p_{2})^2</math></center>
 
 
 
<center><math>(E^*)^2=(E_{1}+E_{2})^2-(\vec{p_{1}}+\vec p_{2})^2</math></center>
 
 
 
<center><math>E^*=\sqrt{(E_{1}+E_{2})^2-(\vec{p_{1}}+\vec p_{2})^2}</math></center>
 
 
 
<center><math>E^*=\sqrt{E_{1}^2+2E_{1}E_{2}+E_{2}^2-\vec p_{1}  . \vec p_{2} -\vec p_{1}  . \vec p_{1} -\vec p_{2}  . \vec p_{1} -\vec p_{2}  . \vec p_{2} }</math></center>
 
 
 
<center><math>E^*=\sqrt{(E_{1}^2- p_{1}^2 )+(E_{2}^2-p_{2}^2 )+2E_{1}E_{2}-\vec p_{1}  . \vec p_{2} -\vec p_{2}  . \vec p_{1} }</math></center>
 
 
 
<center><math>E^*=\sqrt{(E_{1}^2- p_{1}^2 )+(E_{2}^2-p_{2}^2 )+2E_{1}E_{2}-p_{1} p_{2}\cos(\theta) - p_{2} p_{1}\cos(\theta) }</math></center>
 
 
 
 
<center><math>E^*=\sqrt{m_{1}^2+m_{2}^2+2E_{1}E_{2}-p_{1} p_{2}\cos(\theta) - p_{2} p_{1}\cos(\theta) }</math></center>
 
 
 
<center><math>E^*=\sqrt{m_{1}^2+m_{2}^2+2E_{1}E_{2}-2p_{1} p_{2}\cos(\theta) }</math></center>
 
 
 
 
<center><math>E^*=\sqrt{m_{1}^2+m_{2}^2+2E_{1}E_{2}-2p_{1} p_{2}\cos(\theta) }</math></center>
 
 
 
Using the relations <math>\beta\equiv \vec p/E\Longrightarrow \vec p=\beta E</math>
 
 
 
<center><math>E^*=\sqrt{2m^2+2E_{1}E_{2}(1-\beta_{1}\beta_{2}\cos(\theta))}</math></center>
 
 
 
<center>where <math> \theta </math> is the angle between the particles in the Lab frame.</center>
 
 
 
 
 
In the frame where one particle ''(p<sub>2</sub>)'' is at rest
 
 
 
<center><math>\Longrightarrow \beta_{2}=0</math></center>
 
 
 
<center><math>\Longrightarrow p_{2}=0</math></center>
 
 
 
which implies,
 
 
 
<center><math> E_{2}=\sqrt{p_{2}^2+m^2}=m</math></center>
 
 
 
 
 
{| class="wikitable" align="center"
 
| style="background: gray"      | <math>E^*=(2m(m+E_{1})^{1/2}=(2(.511MeV)(.511MeV+\sqrt{(11000 MeV)^2+(.511 MeV)^2})^{1/2}\approx 106.030760886 MeV</math>
 
|}
 
 
where <math>E_{1}=\sqrt{p_{1}^2+m^2}\approx 11000 MeV</math>
 
 
 
====Scattered and Moller Electron energies in CM====
 
Inspecting the Lorentz transformation to the Center of Mass frame:
 
 
 
<center><math>\left( \begin{matrix}E^*_{1}+E^*_{2}\\ 0 \\ 0 \\ 0\end{matrix} \right)=\left(\begin{matrix}\gamma^* & 0 & 0 & -\beta^* \gamma^*\\0 & 1 & 0 & 0 \\ 0 & 0 & 1 &0 \\ -\beta^* \gamma^* & 0 & 0 & \gamma^* \end{matrix} \right) . \left( \begin{matrix}E_{1}+E_{2}\\ 0 \\ 0 \\ p_{1(z)}+p_{2(z)}\end{matrix} \right)</math></center>
 
 
 
For the case of a stationary electron, this simplifies to:
 
 
<center><math>\left( \begin{matrix} E^* \\ p^*_{x} \\ p^*_{y} \\ p^*_{z}\end{matrix} \right)=\left(\begin{matrix}\gamma^* & 0 & 0 & -\beta^* \gamma^*\\0 & 1 & 0 & 0 \\ 0 & 0 & 1 &0 \\ -\beta^*\gamma^* & 0 & 0 & \gamma^* \end{matrix} \right) . \left( \begin{matrix}E_{1}+m\\ 0 \\ 0 \\ p_{1(z)}+0\end{matrix} \right)</math></center>
 
 
 
which gives,
 
 
 
<center><math>\Longrightarrow\begin{cases}
 
E^*=\gamma^* (E_{1}+m)-\beta^* \gamma^* p_{1(z)} \\
 
p^*_{z}=-\beta^* \gamma^*(E_{1}+m)+\gamma^* p_{1(z)}
 
\end{cases}</math></center>
 
 
 
Solving for <math>\beta^*</math>, with <math>p^*_{z}=0</math>
 
 
<center><math>\Longrightarrow \beta^* \gamma^*(E_{1}+m)=\gamma^* p_{1(z)}</math></center>
 
 
 
{| class="wikitable" align="center"
 
| style="background: gray"      | <math>\Longrightarrow \beta^*=\frac{p_{1}}{(E_{1}+m)}</math>
 
|}
 
 
 
 
Similarly, solving for <math>\gamma^*</math> by substituting in <math>\beta^*</math>
 
 
 
<center><math>E^*=\gamma^* (E_{1}+m)-\frac{p_{1}}{(E_{1}+m)} \gamma^* p_{1(z)}</math></center>
 
 
 
<center><math>E^*=\gamma^* \frac{(E_{1}+m)^2}{(E_{1}+m)}-\gamma^*\frac{(p_{1(z)})^2}{(E_{1}+m)}</math></center>
 
 
 
Using the fact that <math>E^*=[(E_{1}+E_{2})^2-(\vec p_{1}+\vec p_{2})^2]^{1/2}</math>
 
 
 
<center><math>E^*=\gamma^* \frac{E^*\ ^2}{(E_{1}+m)}</math></center>
 
 
{| class="wikitable" align="center"
 
| style="background: gray"      | <math>\Longrightarrow \gamma^*=\frac{(E_1+m)} {E^*}</math>
 
|}
 
 
 
 
 
Using the relation
 
 
<center><math>\left( \begin{matrix} E^*_{1}+E^*_{2} \\ p^*_{1(x)}+p^*_{2(x)} \\ p^*_{1(y)}+p^*_{2(y)} \\ p^*_{1(z)}+p^*_{2(z)}\end{matrix} \right)=\left(\begin{matrix}\gamma^* & 0 & 0 & -\beta^* \gamma^*\\0 & 1 & 0 & 0 \\ 0 & 0 & 1 &0 \\ -\beta^* \gamma^* & 0 & 0 & \gamma^* \end{matrix} \right) . \left( \begin{matrix}E_{1}+m\\ 0 \\ 0 \\ p_{1(z)}+0\end{matrix} \right)</math></center>
 
 
 
<center><math>\Longrightarrow \left( \begin{matrix} E^*_{2} \\ p^*_{2(x)} \\ p^*_{2(y)} \\ p^*_{2(z)}\end{matrix} \right)=\left(\begin{matrix}\gamma^* & 0 & 0 & -\beta^* \gamma^*\\0 & 1 & 0 & 0 \\ 0 & 0 & 1 &0 \\ -\beta^* \gamma^* & 0 & 0 & \gamma^* \end{matrix} \right) . \left( \begin{matrix}m\\ 0 \\ 0 \\ 0\end{matrix} \right)</math></center>
 
 
 
<center><math>\Longrightarrow\begin{cases}
 
E^*_{2}=\gamma^* (m) \\
 
p^*_{2(z)}=-\beta^* \gamma^* (m)
 
\end{cases}</math></center>
 
 
 
<center><math>\Longrightarrow\begin{cases}
 
E^*_{2}=\frac{(E_{1}+m)}{E^*} (m) \\
 
p^*_{2(z)}=-\frac{p_{1}}{(E_{1}+m)} \frac{(E_{1}+m)}{E^*} (m_{2})
 
\end{cases}</math></center>
 
 
 
<center><math>\Longrightarrow\begin{cases}
 
E^*_{2}=\frac{(11000 MeV+.511 MeV)}{106.031 MeV} (.511 MeV) \approx 53.015 MeV\\
 
p^*_{2(z)}=-\frac{11000 MeV}{106.031 MeV} (.511 MeV) \approx -53.013 MeV
 
\end{cases}</math></center>
 
 
 
<center><math>\Longrightarrow \left( \begin{matrix} E^*_{1}\\ p^*_{1(x)} \\ p^*_{1(y)} \\ p^*_{1(z)}\end{matrix} \right)=\left(\begin{matrix}\gamma^* & 0 & 0 & -\beta^* \gamma^*\\0 & 1 & 0 & 0 \\ 0 & 0 & 1 &0 \\ -\beta^* \gamma^* & 0 & 0 & \gamma^* \end{matrix} \right) . \left( \begin{matrix}E_{1}\\ 0 \\ 0 \\ p_{1(z)}\end{matrix} \right)</math></center>
 
 
 
<center><math>\Longrightarrow\begin{cases}
 
E^*_{1}=\gamma^* (E_{1})-\beta^* \gamma^* p_{1(z)} \\
 
p^*_{1(z)}=-\beta^* \gamma^*(E_{1})+\gamma^* p_{1(z)}
 
\end{cases}</math></center>
 
 
 
 
<center><math>\Longrightarrow\begin{cases}
 
E^*_{1}=\frac{(E_{1}+m)}{E^*} (E_{1})-\frac{p_{1(z)}}{(E_{1}+m)} \frac{(E_{1}+m)}{E^*} p_{1(z)} \\
 
p^*_{1(z)}=-\frac{p_{1}}{(E_{1}+m)} \frac{(E_{1}+m)}{E^*}(E_{1})+\frac{(E_{1}+m)}{E^*} p_{1(z)}
 
\end{cases}</math></center>
 
 
 
 
<center><math>\Longrightarrow\begin{cases}
 
E^*_{1}=\frac{(11000 MeV+.511 MeV)}{106.031 MeV} (11000 MeV)-\frac{11000 MeV}{106.031 MeV} 11000 MeV \approx 53.015 MeV\\
 
p^*_{1(z)}=-\frac{11000 MeV}{106.031 MeV}(11000 MeV)+\frac{(11000 MeV+.511 MeV)}{106.031 MeV} 11000 MeV \approx 53.013 MeV
 
\end{cases}</math></center>
 
 
 
 
<center><math>p^*_{1} =\sqrt {(p^*_{1(x)})^2+(p^*_{1(y)})^2+(p^*_{1(z)})^2} \Longrightarrow p^*_{1}=p^*_{1(z)}</math></center>
 
 
 
<center><math>p^*_{2} =\sqrt {(p^*_{2(x)})^2+(p^*_{2(y)})^2+(p^*_{2(z)})^2} \Longrightarrow p^*_{2}=p^*_{2(z)}</math></center>
 
 
 
This gives the momenta of the particles in the center of mass to have equal magnitude, but opposite directions.
 
 
 
 
 
{| class="wikitable" align="center"
 
| style="background: gray"      | <center><math>E^*=E^*_1+E^*_2=\sqrt{2m(m+E_1)}</math></center>
 
|}
 
 
==Final Conditions==
 
 
===Moller electron Lab Frame===
 
Finding the correct kinematic values starting from knowing the momentum of the Moller electron, <math>p^'_{2}</math> ,  in the Lab frame,
 
====xz Plane====
 
<center>[[File:xz_lab.png | 400 px]]</center>
 
<center>'''Figure 3: Definition of Moller electron variables in the Lab Frame in the x-z plane.'''</center>
 
 
<center>Using <math>\theta '_2=\arccos \left(\frac{p^'_{2(z)}}{p^'_{2}}\right)</math></center>
 
 
 
{| class="wikitable" align="center"
 
| style="background: gray"      | <math>\Longrightarrow {p^'_{2(z)}=p^'_{2}\cos(\theta '_2)}</math>
 
|}
 
 
 
 
 
Checking on the sign resulting from the cosine function, we are limited to:
 
 
{| class="wikitable" align="center"
 
| style="background: red"      | <math>0^\circ \le \theta '_2 \le 60^\circ \equiv 0 \le \theta '_2 \le 1.046\ Radians</math>
 
|}
 
 
Since,
 
<center><math>\frac{p^'_{2(z)}}{p^'_{2}}=cos(\theta '_2)</math></center>
 
 
 
<center><math>\Longrightarrow p^'_{2(z)}\ should\ always\ be\ positive</math></center>
 
 
====xy Plane====
 
<center>[[File:xy_lab.png | 400 px]]</center>
 
<center>'''Figure 4: Definition of Moller electron variables in the Lab Frame in the x-y plane.'''</center>
 
 
<center>Similarly, <math>\phi '_2=\arccos \left( \frac{p^'_{2(x) Lab}}{p^'_{2(xy)}} \right)</math></center>
 
 
 
<center>where <math>p_{2(xy)}^'=\sqrt{(p_{2(x)}^')^2+(p^'_{2(y)})^2}</math></center>
 
 
 
<center><math>(p^'_{2(xy)})^2=(p^'_{2(x)})^2+(p^'_{2(y)})^2</math></center>
 
 
 
<center>and using <math>p^2=p_{(x)}^2+p_{(y)}^2+p_{(z)}^2</math></center>
 
 
 
<center>this gives <math>(p^'_{2})^2=(p^'_{2(xy)})^2+(p^'_{2(z)})^2</math></center>
 
 
 
<center><math>\Longrightarrow (p'_{2})^2-(p'_{2(z)})^2 = (p'_{2(xy)})^2</math></center>
 
 
 
<center><math>\Longrightarrow p_{2(xy)}^'=\sqrt{(p^'_{2})^2-(p^'_{2(z)})^2}</math></center>
 
 
 
<center>which gives<math>\phi '_2 = \arccos \left( \frac{p_{2(x)}'}{\sqrt{p_{2}^{'\ 2}-p_{2(z)}^{'\ 2}}}\right)</math></center>
 
 
{| class="wikitable" align="center"
 
| style="background: gray"      | <math>\Longrightarrow p_{2(x)}'=\sqrt{p_{2}^{'\ 2}-p_{2(z)}^{'\ 2}} \cos(\phi)</math>
 
|}
 
 
 
<center>Similarly, using <math>p_{2}^2=p_{2(x)}^2+p_{2(y)}^2+p_{2(z)}^2</math></center>
 
 
 
<center><math>\Longrightarrow p_{2}^{'\ 2}-p_{2(x)}^{'\ 2}-p_{2(z)}^{'\ 2}=p_{2(y)}^{'\ 2}</math></center>
 
 
{| class="wikitable" align="center"
 
| style="background: gray"      | <math>p_{2(y)}'=\sqrt{p_{2}^{'\ 2}-p_{2(x)}^{'\ 2}-p_{2(z)}^{'\ 2}}</math>
 
|}
 
 
=====<math>p_{x}</math> and <math>p_{y}</math> results based on <math>\phi</math>=====
 
Checking on the sign from the cosine results for <math>\phi '_2</math>
 
 
 
We have the limiting range that <math>\phi</math> must fall within:
 
{| class="wikitable" align="center"
 
| style="background: grey"      | <math>-\pi \le \phi '_2 \le \pi\ Radians</math>
 
|}
 
 
<center>[[File:xy_plane.png | 400px]]</center>
 
 
Examining the signs of the components which make up the angle <math>\phi</math> in the 4 quadrants which make up the xy plane:
 
 
{| class="wikitable" align="center"
 
| style="background: red"      | <math>For\ 0 \ge \phi '_2 \ge \frac{-\pi}{2}\ Radians</math>
 
|-
 
| <center>p<sub>x</sub>=POSITIVE</center>
 
|-
 
| <center>p<sub>y</sub>=NEGATIVE</center>
 
|}
 
 
{| class="wikitable" align="center"
 
| style="background: red"      | <math>For\ 0 \le \phi '_2 \le \frac{\pi}{2}\ Radians</math>
 
|-
 
| <center>p<sub>x</sub>=POSITIVE</center>
 
|-
 
| <center>p<sub>y</sub>=POSITIVE</center>
 
|}
 
 
{| class="wikitable" align="center"
 
| style="background: red"      | <math>For\ \frac{-\pi}{2} \ge \phi '_2 \ge -\pi\ Radians</math>
 
|-
 
| <center>p<sub>x</sub>=NEGATIVE</center>
 
|-
 
| <center>p<sub>y</sub>=NEGATIVE</center>
 
|}
 
 
{| class="wikitable" align="center"
 
| style="background: red"      | <math>For\ \frac{\pi}{2} \le \phi '_2 \le \pi\ Radians</math>
 
|-
 
|<center>p<sub>x</sub>=NEGATIVE</center>
 
|-
 
| <center>p<sub>y</sub>=POSITIVE</center>
 
|}
 
 
===Moller electron Center of Mass Frame===
 
 
Relativistically, the x and y components remain the same in the conversion from the Lab frame to the Center of Mass frame, since the direction of motion is only in the z direction.
 
 
 
 
{| class="wikitable" align="center"
 
| style="background: gray"      | <math>p^*_{2(x)}\Leftrightarrow p_{2(x)}'</math>
 
|}
 
 
 
{| class="wikitable" align="center"
 
| style="background: gray"  | <math>p^*_{2(y)}\Leftrightarrow p_{2(y)}'</math>
 
|}
 
 
 
 
{| class="wikitable" align="center"
 
| style="background: gray"  | <math>p^*_{2(z)}=-\sqrt {(p^*_2)^2-(p^*_{2(x)})^2-(p^*_{2(y)})^2}</math>
 
|}
 
 
 
We choose negative, since the incoming electron in the lab frame is traveling in the positive direction, and the Moller electron is initially at rest, which translates to negative motion in the CM frame.
 
 
 
 
Redefining the components in simpler terms, we use the fact that
 
<center><math>E^*\equiv E^*_1+E^*_2</math></center>
 
 
<center><math>2E^*_2=\sqrt{2m(m+E_1)}</math></center>
 
 
 
{| class="wikitable" align="center"
 
| style="background: gray"      | <center><math>E^*_2=\sqrt{\frac{m(m+E_1)}{2}}</math></center>
 
|}
 
 
 
{| class="wikitable" align="center"
 
| style="background: gray"      | <math> p^*_{2}=\sqrt{E_{2}^{*2}-m^2}</math>
 
|}
 
Initially, before the collision in the CM frame, p<sub>2</sub> was in the negative z direction.  After the collision, the direction should reverse to the positive z direction.  This same switching of the momentum direction alters p<sub>1</sub> as well.
 
 
 
<center>Using <math>\theta '_2=\arccos \left(\frac{p^'_{2(z)}}{p^'_{2}}\right)</math></center>
 
 
{| class="wikitable" align="center"
 
| style="background: gray"  | <math>\Longrightarrow \theta ^*_2=\arccos \left(\frac{p^*_{2(z)}}{p^*_{2}}\right)</math>
 
|}
 
 
===Electron Center of Mass Frame===
 
Relativistically, the x, y, and z components have the same magnitude, but opposite direction, in the conversion from the Moller electron's Center of Mass frame to the electron's Center of Mass frame.
 
 
 
 
{| class="wikitable" align="center"
 
| style="background: gray"      | <math>p^*_{2(x)}= -p^*_{1(x)}</math>
 
|}
 
 
 
{| class="wikitable" align="center"
 
| style="background: gray"  | <math>p^*_{2(y)}= -p^*_{1(y)}</math>
 
|}
 
 
 
 
{| class="wikitable" align="center"
 
| style="background: gray"  | <math>p^*_{2(z)}=-p^*_{1(z)}</math>
 
|}
 
 
where previously it was shown
 
 
{| class="wikitable" align="center"
 
| style="background: gray"      | <math>|p^*_{1}|\equiv |p^*_{2}|</math>
 
|}
 
 
 
 
 
 
{| class="wikitable" align="center"
 
| style="background: gray"      | <math>E^*_{1}\equiv E^*_{2}</math>
 
|}
 
 
 
 
 
{| class="wikitable" align="center"
 
| style="background: gray"      | <math>\theta_{1}^*=\pi-\theta_{1}^*</math>
 
|}
 
 
===Electron Lab Frame===
 
 
We can perform a Lorentz transformation from the Center of Mass frame, with zero total momentum, to the Lab frame.
 
 
 
<center><math>\left( \begin{matrix}E'_{1}+E'_{2}\\ p'_{1(x)}+p'_{2(x)} \\p'_{1(y)}+ p'_{2(y)} \\ p'_{1(z)}+p'_{2(z)}\end{matrix} \right)=\left(\begin{matrix}\gamma^* & 0 & 0 & \beta^* \gamma^*\\0 & 1 & 0 & 0 \\ 0 & 0 & 1 &0 \\ \beta^* \gamma^* & 0 & 0 & \gamma^* \end{matrix} \right) . \left( \begin{matrix}E^*_{1}+E^*_{2}\\ p^*_{1(x)}+p^*_{2(x)} \\ p^*_{(1(y)}+p^*_{2(y)} \\ p^*_{1(z)}+p^*_{2(z)}\end{matrix} \right)</math></center>
 
 
 
{| class="wikitable" align="center"
 
| style="background: gray"      | <math>p^*_{1(x)}= p'_{1(x)}</math>
 
|}
 
 
 
{| class="wikitable" align="center"
 
| style="background: gray"  | <math>p^*_{1(y)}= p'_{1(y)}</math>
 
|}
 
 
 
<center><math>\Longrightarrow\begin{cases}
 
E'=\gamma E^*+\beta \gamma p^*_{z} \\
 
p'_{z}=\beta \gamma E^*+ \gamma p^*_{z}
 
\end{cases}</math></center>
 
 
 
<center><math>\Longrightarrow\begin{cases}
 
\gamma = \frac{E'}{E^*} \\
 
\beta =\frac{p'_{z}}{E'}
 
\end{cases}</math></center>
 
 
 
 
 
Without knowing the values for gamma or beta, we can use the fact that lengths of the two 4-momenta are invariant
 
 
<center><math>s={\mathbf P^*} ^2=(E^*_{1}+E^*_{2})^2-(\vec p\ ^*_{1}+\vec p\ ^*_{2})^2</math></center>
 
 
 
<center><math>s={\mathbf P}^2=(E'_{1}+E'_{2})^2-(\vec p\ '_{1}+\vec p\ '_{2})^2</math></center>
 
 
 
Setting these equal to each other, we can use this for the collision of two particles of mass m<sub>1</sub> and m<sub>2</sub>.  Since the total momentum is zero in the Center of Mass frame, we can express total energy in the center of mass frame as
 
 
<center><math>(E^*_{1}+E^*_{2})^2-(\vec p\ ^*_{1}+\vec p\ ^*_{2})^2=s=(E'_{1}+E'_{2})^2-(\vec p\ '_{1}+\vec p\ '_{2})^2</math></center>
 
 
 
<center><math>(E^*)^2-(\vec p\ ^*)^2=(E'_{1}+E'_{2})^2-(\vec p\ ')^2</math></center>
 
 
 
<center><math>(E^*)^2=(E')^2-(\vec p\ ')^2</math></center>
 
 
 
<center><math>(E^*)^2+(\vec{p'})^2=(E')^2</math></center>
 
 
 
<center><math>E'=\sqrt{(E^*)^2+(\vec p\ ')^2}</math></center>
 
 
Since momentum is conserved, the initial momentum from the incident electron and stationary electron is still the same in the Lab frame, therefore <math>p\ '_{Lab}=11000 MeV</math>
 
 
 
<center><math>E'=\sqrt{(106.031 MeV)^2+(11000 MeV)^2}\approx 11000.511 MeV</math></center>
 
 
 
This is the same as the initial total energy in the Lab frame, which should be expected since scattering is considered to be an elastic collision.
 
 
 
Since,
 
 
<center><math>E'\equiv E'_{1}+E'_{2}</math></center>
 
 
 
{| class="wikitable" align="center"
 
| style="background: gray"      | <math>\Longrightarrow E'_{1}=E'-E'_{2}</math>
 
|}
 
 
Using the relation
 
 
<center><math>E'^2\equiv p^2+m^2</math></center>
 
 
 
{| class="wikitable" align="center"
 
| style="background: gray"      | <math>\Longrightarrow p_{1}^{'\ 2}=E_{1}^{'\ 2}-m_{1}^2=E_{1}^{'\ 2}-(.511 MeV)^2</math>
 
|}
 
 
 
Using
 
 
<center><math>p^2 \equiv p_x^2+p_y^2+p_z^2</math></center>
 
 
 
 
{| class="wikitable" align="center"
 
| style="background: gray"      | <math>\Longrightarrow p_{1(z)}'=\sqrt {p_{1}^{'\ 2}-p_{1(x)}^{'\ 2}-p_{1(y)}^{'\ 2}}</math>
 
|}
 
 
===Summary of 4-momentum calculations===
 
{| class="wikitable" align="center"
 
| style="background: red"      | <math>For\ 0 \ge \phi \ge \frac{-\pi}{2}\ Radians</math>
 
|-
 
| <center>x=POSITIVE</center>
 
|-
 
| <center>y=NEGATIVE</center>
 
|}
 
 
{| class="wikitable" align="center"
 
| style="background: red"      | <math>For\ 0 \le \phi \le \frac{\pi}{2}\ Radians</math>
 
|-
 
| <center>x=POSITIVE</center>
 
|-
 
| <center>y=POSITIVE</center>
 
|}
 
 
{| class="wikitable" align="center"
 
| style="background: red"      | <math>For\ \frac{-\pi}{2} \ge \phi \ge -\pi\ Radians</math>
 
|-
 
| <center>x=NEGATIVE</center>
 
|-
 
| <center>y=NEGATIVE</center>
 
|}
 
 
{| class="wikitable" align="center"
 
| style="background: red"      | <math>For\ \frac{\pi}{2} \le \phi \le \pi\ Radians</math>
 
|-
 
|<center> x=NEGATIVE</center>
 
|-
 
| <center>y=POSITIVE</center>
 
|}
 
 
 
 
{| class="wikitable" align="center" border=1
 
  |+ '''4 momentum calculations for different frames of reference'''
 
|-
 
  ! Electron Initial Lab Frame
 
  ! Moller electron Initial Lab Frame
 
  ! Moller electron Final Lab Frame
 
  ! Moller electron Center of Mass Frame
 
  ! Electron Center of Mass Frame
 
  ! Electron Final Lab Frame
 
|-
 
  | <math>p_{1}\equiv 11000 MeV</math>
 
  | <math>p_{2}\equiv 0</math>
 
  | <math>p_{2}'\equiv INPUT</math>
 
  | <math>p_{2}^*=\sqrt{E_{2}^{*2}-m^2}</math>
 
  | <math>p_{1}^*=\sqrt{E_{2}^{*2}-m^2}</math>
 
  | <math>p_{1}'=\sqrt{E_{1}^{'\ 2}-m^2}</math>
 
|-
 
  | <math>\theta_{1}\equiv 0</math>
 
  | <math>\theta_{2}\equiv 0</math>
 
  | <math>\theta_{2}'\equiv INPUT</math>
 
  | <math>\theta_{2}^*=\arccos \left(\frac{p_{2(z)}^*}{p_2^*} \right)</math>
 
  | <math>\theta_{1}^*=\pi-\theta_{2}^*</math>
 
  | <math>\theta_{1}'= \arccos \left(\frac{p_{1(z)}'}{p_{1}'} \right)</math>
 
|-
 
  | <math>E_{1}=\sqrt{p_1^2+m^2}</math>
 
  | <math>E_{2}\equiv m</math>
 
  | <math>E_{2}'=\sqrt{p_{2}^{'\ 2}+m^2}</math>
 
  | <math>E_{2}^*=\sqrt{\frac{m(m+E_1)}{2}}</math>
 
  | <math>E_{1}^*=\sqrt{\frac{m(m+E_1)}{2}}</math>
 
  | <math>E_{1}'\equiv E'-E_{2}'</math>
 
|-
 
  | <math>p_{1(x)}\equiv 0</math>
 
  | <math>p_{2(x)}\equiv 0</math>
 
  | <math>p_{2(x)}'=\sqrt{p_{2}^{'\ 2}-p_{2(z)}^{'\ 2}} cos(\phi '_2)</math>
 
  | <math>p_{2(x)}^*\equiv p_{2(x)}'</math>
 
  | <math>p_{1(x)}^*\equiv-p_{2(x)}^*</math>
 
  | <math>p_{1(x)}'\equiv p_{1(x)}^*</math>
 
|-
 
  | <math>p_{1(y)}\equiv 0</math>
 
  | <math>p_{2(y)}\equiv 0</math>
 
  | <math>p_{2(y)}'=\sqrt{p_{2}^{'\ 2}-p_{2(x)}^{'\ 2}-p_{2(z)}^{'\ 2}}</math>
 
  | <math>p_{2(y)}^*\equiv p_{2(y)}'</math>
 
  | <math>p_{1(y)}^*\equiv -p_{2(y)}^*</math>
 
  | <math>p_{1(y)}'\equiv p_{2(y)}^*</math>
 
|-
 
  | <math>p_{1(z)}\equiv p_1</math>
 
  | <math>p_{2(z)}\equiv 0</math>
 
  | <math>p_{2(z)}'\equiv p_{2}'\ cos(\theta'_2)</math>
 
  | <math>p_{2(z)}^*=-\sqrt{p_{2}^{*\ 2}-p_{2(x)}^{*\ 2}-p_{2(y)}^{*\ 2}}</math>
 
  | <math>p_{1(z)}^*\equiv -p_{2(z)}^*</math>
 
  | <math>p_{1(z)}'=\sqrt{p_{1}^{'\ 2}-p_{(1(x)}^{'\ 2}-p_{1(y)}^{'\ 2}}</math>
 
|}
 
 
===Verification===
 
===Verification===
 
[[Verification of Relativistic Components]]
 
[[Verification of Relativistic Components]]
  
 
+
===Conclusion===
 +
[[Verification_of_Relativistic_Components#Conclusion | Conclusion]]
 
----
 
----
  

Latest revision as of 20:25, 31 May 2017