Difference between revisions of "Scattering Cross Section"

From New IAC Wiki
Jump to navigation Jump to search
 
(182 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
=Scattering Cross Section=
 
=Scattering Cross Section=
  
<center><math>d\sigma = \frac{number\ of\ particles\ scattered\ / sec\ into\ d\Omega\ at\ \Theta , \Phi}{number\ of\ particles\ /cm^2\ /sec\ in\ incoming\ beam} = I(\Theta,\Phi)d\Omega</math></center>
+
<center>[[File:Scattering.png | 400 px]]</center>
  
  
<center><math>where\ \frac{d\sigma}{d\Omega}\equiv differential\ scattering\ cross\ section</math></center>
+
<center><math>\frac{d\sigma}{d\Omega} = \frac{\left(\frac{number\ of\ particles\ scattered/second}{d\Omega}\right)}{\left(\frac{number\ of\ incoming\ particles/second}{cm^2}\right)}=\frac{dN}{\mathcal L\, d\Omega} =differential\ scattering\ cross\ section</math></center>
  
  
<center><math>and\ \int\limits_{\Theta=0}^{\pi} \int\limits_{\Phi=0}^{2\pi} \left(\frac{d\sigma}{d\Omega}\right)\ d\Omega \equiv total\ scattering\ cross\  section</math></center>
+
<center><math>where\ d\Omega=\sin{\theta}\,d\theta\,d\phi</math></center>
 +
 
 +
 
 +
 
 +
<center><math>\Rightarrow \sigma=\int\limits_{\theta=0}^{\pi} \int\limits_{\phi=0}^{2\pi} \left(\frac{d\sigma}{d\Omega}\right)\ \sin{\theta}\,d\theta\,d\phi =\frac{N}{\mathcal L}\equiv total\ scattering\ cross\  section</math></center>
 +
 
 +
Since this is just a ratio of detected particles to total particles, this gives the cross section as a relative probablity of a scattering, or reaction, to occur.
 +
==Luminosity==
 +
 
 +
Luminosity is the quantity that measures the ability of a particle accelerator to produce the required number of interactions and is the proportional to the number of events per second dR/dt and the total cross section σp:
 +
 
 +
<center><math>dN=\frac{dR}{dt}=\mathcal L \times \sigma_p</math></center>
 +
 
 +
In order to compute a luminosity for fixed target experiment, it is necessary to take into account the properties of the incoming beam and the stationary target.
 +
 
 +
 
 +
<center><math>\mathcal L = \Phi \rho \ell \approx i_{beam} \rho \ell</math></center>
 +
 
 +
where
 +
 
 +
<center><math>\Phi \equiv </math>flux, or incoming particles per second</center>
 +
 
 +
 
 +
<center><math>\rho \equiv </math>target density</center>
 +
 
 +
 
 +
<center><math>\ell \equiv </math>length of target</center>
 +
 
 +
 
 +
For the differential cross-section:
 +
 
 +
<center><math>\frac{d\sigma}{d\Omega} =\frac{dN}{\mathcal L d\Omega}=\frac{dN}{\Phi \rho \ell d\Omega}</math></center>
 +
 
 +
=Transforming Cross Section Between Frames=
 +
==Cross Section as a Function of Momentum and Solid Angle==
 +
Transforming the cross section between two different frames of reference has the condition that the quantity must be equal in both frames.  This is due to the fact that
 +
 
 +
<center><math>\sigma=\frac{N}{\mathcal L}=constant\ number</math></center>
 +
 
 +
 
 +
 
 +
This makes the total cross section a Lorentz invariant in that it is not effected by any relativistic transformations.
 +
 
 +
<center><math>\therefore\ \sigma_{CM}=\sigma_{Lab}</math></center>
 +
 
 +
 
 +
This implies that the number of particles going into the solid-angle element '''''d Ω<sub>Lab</sub>''''' and having a momentum between '''''p<sub>Lab</sub>''''' and '''''p<sub>Lab</sub>+dp<sub>Lab</sub>'''''be the same as the number going into the corresponding solid-angle element '''''dΩ<sub>CM</sub>''''' and having a corresponding momentum between '''''p<sub>CM</sub>''''' and '''''p<sub>CM</sub>+dp<sub>CM</sub>'''''
 +
 
 +
 
 +
<center><math>\frac{\partial ^2\sigma(p,\, \theta ,\, \phi)}{\partial p\,\partial \Omega}dp \,d\Omega=\frac{\partial ^2\sigma^*(p^*,\, \theta^* ,\, \phi^*)}{\partial p^* \,\partial \Omega^* }dp^* \, d\Omega^*</math></center>
 +
 
 +
 
 +
<center><math>where\ d\Omega=\sin{\theta}\,d\theta\,d\phi</math></center>
 +
 
 +
 
 +
Expressing this in terms of the solid angle components,
 +
 
 +
<center><math>\frac{\partial ^2\sigma(p,\, \theta ,\, \phi)}{\partial p\,\partial \Omega}\partial p \,\sin{\theta} \,d\theta \,d\phi=\frac{d^2\sigma^*(p^*,\, \theta^* ,\, \phi^*)}{dp^* \, d\Omega^*}dp^*\, \sin{\theta^*}\,d\theta^* \,d\phi^*</math></center>
 +
 
 +
 
 +
As shown earlier,
 +
 
 +
<center><math>\phi=\phi^*</math></center>
 +
 
 +
 
 +
Thus,
 +
<center><math>\Rightarrow\ d\phi=d\phi^*</math></center>
 +
 
 +
 
 +
Simplify our expression for the cross section gives:
 +
<center><math>\frac{\partial ^2\sigma(p,\, \theta ,\, \phi)}{\partial p \,\partial \Omega} dp \,\sin{\theta}\,d\theta=\frac{\partial ^2\sigma^*(p^*,\, \theta^* ,\, \phi^*)}{\partial p^*\, \partial \Omega^*}dp^*\, \sin{\theta^*}\,d\theta^*</math></center>
 +
 
 +
 
 +
 
 +
We can use the fact that
 +
 
 +
<center><math>\sin{\theta}\ d\theta=d(\cos{\theta})</math></center>
 +
 
 +
 
 +
To give
 +
<center><math>\frac{\partial ^2\sigma(p,\, \theta ,\, \phi)}{\partial p\,\partial \Omega} dp\,d(\cos{\theta})=\frac{\partial ^2\sigma^*(p^*,\, \theta^* ,\, \phi^*)}{\partial p^*\, \partial \Omega^*}dp^*\, d(\cos{\theta^*})</math></center>
 +
 
 +
 
 +
 
 +
 
 +
<center><math>\frac{\partial ^2\sigma(p,\, \theta ,\, \phi)}{\partial p\,\partial \Omega} =\frac{\partial ^2\sigma^*(p^*,\, \theta^* ,\, \phi^*)}{\partial p^*\, \partial \Omega^*} \frac{dp^*\,d(\cos{\theta^*})}{dp\,d(\cos{\theta})}</math></center>
 +
 
 +
 
 +
 
 +
<center><math>\frac{\partial ^2\sigma(p,\, \theta ,\, \phi)}{\partial p\,\partial \Omega} =\frac{\partial ^2\sigma^*(p^*,\, \theta^* ,\, \phi^*)}{\partial p^*\, \partial \Omega^*} \frac{\partial (p^*\,\cos{\theta^*)}}{\partial (p\,\cos{\theta})}</math></center>
 +
 
 +
===Using Chain Rule===
 +
We can use the chain rule to find the transformation term on the right hand side:
 +
 
 +
<center><math>\frac{\partial (p^*\, \cos{\theta^*)}}{\partial (p^*\, \theta^*\, \phi^*)} \frac{\partial (p^*\, \theta^*\, \phi^*)}{\partial (p^*_x\, p^*_y\, p^*_z)} \frac{\partial (p^*_x\, p^*_y\, p^*_z)}{\partial (p_x\, p_y\, p_z)} \frac{\partial (p_x\, p_y\, p_z)}{\partial (p\, \theta\, \phi)} \frac{\partial (p\, \theta\, \phi)}{\partial (p\, \cos{\theta})}=\frac{\partial (p^*\, \cos{\theta^*})}{\partial (p\, \cos{\theta})}</math></center>
 +
 
 +
 
 +
Starting with the term:
 +
<center><math>\frac{\partial (p^*\, \cos{\theta^*})} {\partial (p^*\, \theta^*\phi^*)}=\frac{d p^*\, \sin{\theta^*} \, d \theta^* \, d \phi^*}{d p^*\, d \theta^*\, d \phi^*}=\sin{\theta^*}</math></center>
 +
 
 +
 
 +
Similarly,
 +
 
 +
 
 +
<center><math>\frac{\partial (p\, \theta\, \phi)}{\partial (p\, \cos{\theta})}=\frac{1}{\sin{\theta}}</math></center>
 +
 
 +
 
 +
 
 +
Using the conversion of cartesian to spherical coordinates we know:
 +
 
 +
<center><math>\begin{cases}
 +
p_x=p\, \sin{\theta}\, \cos{\phi} \\
 +
p_y=p\, \sin{\theta}\, \sin{\phi} \\
 +
p_z=p\, \cos{\theta}
 +
\end{cases}</math></center>
 +
 
 +
 
 +
and the fact that as was shown earlier, that
 +
 
 +
 
 +
<center><math>\begin{cases}
 +
p^*_x=p_x \\
 +
p^*_y=p_y \\
 +
\phi^*=\phi
 +
\end{cases}</math></center>
 +
 
 +
 
 +
 
 +
This allows us to express the term:
 +
 
 +
<center><math>\frac{\partial (p^*\, \theta^*\, \phi^*)}{\partial (p^*_x\, p^*_y\, p^*_z)}=\biggl[\frac{\partial (p^*_x\, p^*_y\, p^*_z)}{\partial (p^*\, \theta^*\, \phi^*)}\biggr]^{-1}=\biggl[\frac{\partial (p^*\, \sin{\theta^*}\, \cos{\phi^*}p^*\, \sin{\theta^*}\, \sin{\phi^*}p^*\, \cos{\theta^*})}{\partial p^*\, \partial \theta^*\, \partial \phi^*}\biggr]^{-1}</math></center>
 +
 
 +
 
 +
<center><math>\frac{\partial (p^*\, \theta^*\, \phi^*)}{\partial (p^*_x\, p^*_y\, p^*_z)}=\biggl[ \frac{d (p^{*-1})\, d(\cos{\theta^{*}}^{-1})} {d p^*\, d\theta^*}\biggr]=\frac{1}{p^{*2}\sin{\theta^*}}</math></center>
 +
 
 +
 
 +
Again, similarly
 +
 
 +
 
 +
<center><math>\frac{\partial (p_x\, p_y\, p_z)}{\partial (p\, \theta\, \phi)}=p^2\, \sin{\theta}</math></center>
 +
 
 +
 
 +
 
 +
To find the middle component in the chain rule expansion,
 +
 
 +
<center><math>\left( Epxpypz \right)=\left(γ00βγ01000010βγ00γ \right) . \left( Epxpypz \right)</math></center>
 +
 
 +
which gives,
 +
 
 +
 
 +
<center><math>\Longrightarrow\begin{cases}
 +
E^*=\gamma E-\beta \gamma^* p_z \\
 +
p^*_z=-\beta \gamma\, E+\gamma\, p_z
 +
\end{cases}</math></center>
 +
 
 +
 
 +
<center><math>\frac{\partial (p^*_x\, p^*_y\, p^*_z)}{\partial (p_x\, p_y\, p_z)}=\frac{\partial p^*_z}{\partial p_z}=\frac{\partial (-\beta \gamma\, E+\gamma\, p_z)}{\partial p_z}=-\beta \gamma \,\frac{\partial E}{\partial p_z}+\gamma</math></center>
 +
 
 +
 
 +
We can use the relativistic definition of the total Energy,
 +
 
 +
 
 +
<center><math>E=\sqrt{p^2+m^2}=\sqrt{p_x^2+p_y^2+p_z^2+m^2}</math></center>
 +
 
 +
 
 +
 
 +
<center><math>\Rightarrow \frac{\partial E}{\partial p_z}=\frac{\sqrt {p_x^2+p_y^2+p_z^2+m^2}} {\partial p_z}=\frac{p_z}{\sqrt {p_x^2+p_y^2+p_z^2+m^2}}=\frac{p_z}{E}</math></center>
 +
 
 +
 
 +
 
 +
<center><math>\frac{\partial p^*_z}{\partial p_z}=-\beta \gamma \frac{\partial E}{\partial p_z}+\gamma=-\beta \gamma \frac{p_z}{E}+\gamma</math></center>
 +
 
 +
 
 +
Then using the fact that
 +
 
 +
<center><math>E^*\equiv \gamma E-\beta \gamma\, p_z </math></center>
 +
 
 +
 
 +
 
 +
<center><math>\frac{\partial p^*_z}{\partial p_z}=-\beta \gamma \frac{p_z}{E}+\frac{\gamma\, E}{E}=\frac{E^*}{E}</math></center>
 +
 
 +
===Final Expression===
 +
Using the values found above, our expression becomes:
 +
<center><math>\frac{\partial (p^*\, \cos{\theta^*)}}{\partial (p^*\, \theta^*\, \phi^*)} \frac{\partial (p^*\, \theta^*\, \phi^*)}{\partial (p^*_x\, p^*_y\, p^*_z)} \frac{\partial (p^*_x\, p^*_y\, p^*_z)}{\partial (p_x\, p_y\, p_z)} \frac{\partial (p_x\, p_y\, p_z)}{\partial (p\, \theta\, \phi)} \frac{\partial (p\, \theta\, \phi)}{\partial (p\, \cos{\theta})}=\frac{\partial (p^*\, \cos{\theta^*})}{\partial (p\, \cos{\theta})}</math></center>
 +
 
 +
 
 +
 
 +
 
 +
This gives,
 +
<center><math></math></center>
 +
{| class="wikitable" align="center"
 +
| style="background: gray"      | <math>\Longrightarrow \frac{\partial ^2\sigma(p,\, \theta ,\, \phi)}{\partial p\,\partial \Omega} =\frac{\partial ^2\sigma^*(p^*,\, \theta^* ,\, \phi^*)}{\partial p^*\, \partial \Omega^*} \frac{p^2E^*}{p^{*2}E}</math>
 +
|}
 +
 
 +
==Cross Section as a Function of Energy, Momentum, and Solid Angle==
 +
<center><math>\frac{\partial ^2\sigma(E,\, \theta ,\, \phi)}{\partial E\,\partial \Omega} dE\,d(\cos{\theta})=\frac{\partial ^2\sigma^*(p^*,\, \theta^* ,\, \phi^*)}{\partial p^*\, \partial \Omega^*}dp^*\, d(\cos{\theta^*})</math></center>
 +
 
 +
 
 +
 
 +
 
 +
<center><math>\frac{\partial ^2\sigma(E,\, \theta ,\, \phi)}{\partial E\,\partial \Omega} =\frac{\partial ^2\sigma^*(p^*,\, \theta^* ,\, \phi^*)}{\partial p^*\, \partial \Omega^*} \frac{dp^*\,d(\cos{\theta^*})}{dE\,d(\cos{\theta})}</math></center>
 +
 
 +
 
 +
 
 +
<center><math>\frac{\partial ^2\sigma(E,\, \theta ,\, \phi)}{\partial E\,\partial \Omega} =\frac{\partial ^2\sigma^*(p^*,\, \theta^* ,\, \phi^*)}{\partial p^*\, \partial \Omega^*} \frac{\partial (p^*\,\cos{\theta^*)}}{\partial (E\,\cos{\theta})}</math></center>
 +
 
 +
 
 +
We can use the chain rule to find the transformation term on the right hand side:
 +
 
 +
<center><math>\frac{\partial (p^*\, \cos{\theta^*)}}{\partial (p\, \cos{\theta})} \frac{\partial (p\, \cos{\theta})}{\partial (E\, \cos{\theta})}=\frac{\partial (p^*\, \cos{\theta^*})}{\partial (E\, \cos{\theta})}</math></center>
 +
 
 +
 
 +
Using the expression found earlier,
 +
<center><math>\frac{\partial (p^*\, \cos{\theta^*)}}{\partial (p\, \cos{\theta})}=\frac{p^2E^*}{p^{*2}E}</math></center>
 +
 
 +
 
 +
This gives,
 +
<center><math>\frac{p^2E^*}{p^{*2}E} \frac{\partial (p\, \cos{\theta})}{\partial (E\, \cos{\theta})}=\frac{p^2E^*}{p^{*2}E} \frac{dp\, d(\cos{\theta})}{dE\, d(\cos{\theta})}=\frac{p^2E^*}{p^{*2}E} \frac{dp}{dE}</math></center>
 +
 
 +
 
 +
where it was already shown that since p<sub>z</sub> is the only cartesian component affected by the Lorentz shift
 +
<center><math>\frac{dE}{dp}=\frac{dE}{dp_z}=\frac{p_z}{E}=\frac{p}{E}\Rightarrow \frac{dp}{dE}=\frac{E}{p}</math></center>
 +
 
 +
 
 +
<center><math>\frac{p^2E^*}{p^{*2}E} \frac{\partial (p\, \cos{\theta})}{\partial (E\, \cos{\theta})}=\frac{p^2E^*}{p^{*2}E} \frac{E}{p}=\frac{pE^*}{p^{*2}}</math></center>
 +
 
 +
Our final expression
 +
 
 +
{| class="wikitable" align="center"
 +
| style="background: gray"      | <math>\frac{\partial ^2\sigma(E,\, \theta ,\, \phi)}{\partial E\,\partial \Omega} =\frac{\partial ^2\sigma^*(p^*,\, \theta^* ,\, \phi^*)}{\partial p^*\, \partial \Omega^*} \frac{pE^*}{p^{*2}}</math>
 +
 
 +
|}
 +
 
 +
By symmetry,
 +
{| class="wikitable" align="center"
 +
| style="background: gray"      | <math>\frac{\partial ^2\sigma(p,\, \theta ,\, \phi)}{\partial p\, \partial \Omega^*} = \frac{\partial ^2\sigma^*(E^*,\, \theta^* ,\, \phi^*)}{\partial E^*\,\partial \Omega^*}\frac{p^2}{p^{*}E}</math>
 +
|}
 +
 
 +
==Cross Section as a Function of Energy, and Solid Angle==
 +
<center><math>\frac{\partial ^2\sigma(E,\, \theta ,\, \phi)}{\partial E\,\partial \Omega} dE\,d(\cos{\theta})=\frac{\partial ^2\sigma^*(E^*,\, \theta^* ,\, \phi^*)}{\partial E^*\, \partial \Omega^*}dE^*\, d(\cos{\theta^*})</math></center>
 +
 
 +
 
 +
<center><math>\frac{\partial ^2\sigma(E,\, \theta ,\, \phi)}{\partial E\,\partial \Omega} =\frac{\partial ^2\sigma^*(E^*,\, \theta^* ,\, \phi^*)}{\partial E^*\, \partial \Omega^*}\frac{dE^*\, d(\cos{\theta^*})}{dE\,d(\cos{\theta})}</math></center>
 +
 
 +
 
 +
<center><math>\frac{\partial ^2\sigma(E,\, \theta ,\, \phi)}{\partial E\,\partial \Omega} =\frac{\partial ^2\sigma^*(E^*,\, \theta^* ,\, \phi^*)}{\partial E^*\, \partial \Omega^*}\frac{\partial (E^*\, \cos{\theta^*})}{\partial (E\,\cos{\theta})}</math></center>
 +
 
 +
 
 +
 
 +
Using the chain rule
 +
 
 +
<center><math>\frac{\partial (E^*\, \cos{\theta^*})}{\partial (E\,\cos{\theta})}=\frac{\partial (E^*\, \cos{\theta^*})}{\partial (p^*\, \cos{\theta^*})} \frac{\partial (p^*\, \cos{\theta^*})}{\partial (p\, \cos{\theta})} \frac{\partial (p\, \cos{\theta})}{\partial (E\,\cos{\theta})}</math></center>
 +
 
 +
 
 +
Using previous results
 +
 
 +
<center><math>\frac{\partial (E^*\, \cos{\theta^*})}{\partial (E\,\cos{\theta})}=\frac{p^*}{E^*} \frac{p^{2}E^*}{p^{*2}E} \frac{E}{p}=\frac{p}{p^*}</math></center>
 +
 
 +
 
 +
{| class="wikitable" align="center"
 +
| style="background: gray"      | <math>\frac{\partial ^2\sigma(E,\, \theta ,\, \phi)}{\partial E\, \partial \Omega} = \frac{\partial ^2\sigma^*(E^*,\, \theta^* ,\, \phi^*)}{\partial E^*\,\partial \Omega^*}\frac{p}{p^{*}}</math>
 +
|}

Latest revision as of 00:44, 18 December 2016

Scattering Cross Section

Scattering.png


dσdΩ=(number of particles scattered/seconddΩ)(number of incoming particles/secondcm2)=dNLdΩ=differential scattering cross section


where dΩ=sinθdθdϕ


σ=πθ=02πϕ=0(dσdΩ) sinθdθdϕ=NLtotal scattering cross section

Since this is just a ratio of detected particles to total particles, this gives the cross section as a relative probablity of a scattering, or reaction, to occur.

Luminosity

Luminosity is the quantity that measures the ability of a particle accelerator to produce the required number of interactions and is the proportional to the number of events per second dR/dt and the total cross section σp:

dN=dRdt=L×σp

In order to compute a luminosity for fixed target experiment, it is necessary to take into account the properties of the incoming beam and the stationary target.


L=Φρibeamρ

where

Φflux, or incoming particles per second


ρtarget density


length of target


For the differential cross-section:

dσdΩ=dNLdΩ=dNΦρdΩ

Transforming Cross Section Between Frames

Cross Section as a Function of Momentum and Solid Angle

Transforming the cross section between two different frames of reference has the condition that the quantity must be equal in both frames. This is due to the fact that

σ=NL=constant number


This makes the total cross section a Lorentz invariant in that it is not effected by any relativistic transformations.

 σCM=σLab


This implies that the number of particles going into the solid-angle element d ΩLab and having a momentum between pLab and pLab+dpLabbe the same as the number going into the corresponding solid-angle element CM and having a corresponding momentum between pCM and pCM+dpCM


2σ(p,θ,ϕ)pΩdpdΩ=2σ(p,θ,ϕ)pΩdpdΩ


where dΩ=sinθdθdϕ


Expressing this in terms of the solid angle components,

2σ(p,θ,ϕ)pΩpsinθdθdϕ=d2σ(p,θ,ϕ)dpdΩdpsinθdθdϕ


As shown earlier,

ϕ=ϕ


Thus,

 dϕ=dϕ


Simplify our expression for the cross section gives:

2σ(p,θ,ϕ)pΩdpsinθdθ=2σ(p,θ,ϕ)pΩdpsinθdθ


We can use the fact that

sinθ dθ=d(cosθ)


To give

2σ(p,θ,ϕ)pΩdpd(cosθ)=2σ(p,θ,ϕ)pΩdpd(cosθ)



2σ(p,θ,ϕ)pΩ=2σ(p,θ,ϕ)pΩdpd(cosθ)dpd(cosθ)


2σ(p,θ,ϕ)pΩ=2σ(p,θ,ϕ)pΩ(pcosθ)(pcosθ)

Using Chain Rule

We can use the chain rule to find the transformation term on the right hand side:

(pcosθ)(pθϕ)(pθϕ)(pxpypz)(pxpypz)(pxpypz)(pxpypz)(pθϕ)(pθϕ)(pcosθ)=(pcosθ)(pcosθ)


Starting with the term:

(pcosθ)(pθϕ)=dpsinθdθdϕdpdθdϕ=sinθ


Similarly,


(pθϕ)(pcosθ)=1sinθ


Using the conversion of cartesian to spherical coordinates we know:

{px=psinθcosϕpy=psinθsinϕpz=pcosθ


and the fact that as was shown earlier, that


{px=pxpy=pyϕ=ϕ


This allows us to express the term:

(pθϕ)(pxpypz)=[(pxpypz)(pθϕ)]1=[(psinθcosϕpsinθsinϕpcosθ)pθϕ]1


(pθϕ)(pxpypz)=[d(p1)d(cosθ1)dpdθ]=1p2sinθ


Again, similarly


(pxpypz)(pθϕ)=p2sinθ


To find the middle component in the chain rule expansion,

(Epxpypz)=(γ00βγ01000010βγ00γ).(Epxpypz)

which gives,


{E=γEβγpzpz=βγE+γpz


(pxpypz)(pxpypz)=pzpz=(βγE+γpz)pz=βγEpz+γ


We can use the relativistic definition of the total Energy,


E=p2+m2=p2x+p2y+p2z+m2


Epz=p2x+p2y+p2z+m2pz=pzp2x+p2y+p2z+m2=pzE


pzpz=βγEpz+γ=βγpzE+γ


Then using the fact that

EγEβγpz


pzpz=βγpzE+γEE=EE

Final Expression

Using the values found above, our expression becomes:

(pcosθ)(pθϕ)(pθϕ)(pxpypz)(pxpypz)(pxpypz)(pxpypz)(pθϕ)(pθϕ)(pcosθ)=(pcosθ)(pcosθ)



This gives,

2σ(p,θ,ϕ)pΩ=2σ(p,θ,ϕ)pΩp2Ep2E

Cross Section as a Function of Energy, Momentum, and Solid Angle

2σ(E,θ,ϕ)EΩdEd(cosθ)=2σ(p,θ,ϕ)pΩdpd(cosθ)



2σ(E,θ,ϕ)EΩ=2σ(p,θ,ϕ)pΩdpd(cosθ)dEd(cosθ)


2σ(E,θ,ϕ)EΩ=2σ(p,θ,ϕ)pΩ(pcosθ)(Ecosθ)


We can use the chain rule to find the transformation term on the right hand side:

(pcosθ)(pcosθ)(pcosθ)(Ecosθ)=(pcosθ)(Ecosθ)


Using the expression found earlier,

(pcosθ)(pcosθ)=p2Ep2E


This gives,

p2Ep2E(pcosθ)(Ecosθ)=p2Ep2Edpd(cosθ)dEd(cosθ)=p2Ep2EdpdE


where it was already shown that since pz is the only cartesian component affected by the Lorentz shift

dEdp=dEdpz=pzE=pEdpdE=Ep


p2Ep2E(pcosθ)(Ecosθ)=p2Ep2EEp=pEp2

Our final expression

2σ(E,θ,ϕ)EΩ=2σ(p,θ,ϕ)pΩpEp2

By symmetry,

2σ(p,θ,ϕ)pΩ=2σ(E,θ,ϕ)EΩp2pE

Cross Section as a Function of Energy, and Solid Angle

2σ(E,θ,ϕ)EΩdEd(cosθ)=2σ(E,θ,ϕ)EΩdEd(cosθ)


2σ(E,θ,ϕ)EΩ=2σ(E,θ,ϕ)EΩdEd(cosθ)dEd(cosθ)


2σ(E,θ,ϕ)EΩ=2σ(E,θ,ϕ)EΩ(Ecosθ)(Ecosθ)


Using the chain rule

(Ecosθ)(Ecosθ)=(Ecosθ)(pcosθ)(pcosθ)(pcosθ)(pcosθ)(Ecosθ)


Using previous results

(Ecosθ)(Ecosθ)=pEp2Ep2EEp=pp


2σ(E,θ,ϕ)EΩ=2σ(E,θ,ϕ)EΩpp