Difference between revisions of "HEDP notes"

From New IAC Wiki
Jump to navigation Jump to search
 
(29 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
[https://wiki.iac.isu.edu/index.php/RS#Pulsed-power_applications_.282-LTD-driver_and_more.29 go back]
 
[https://wiki.iac.isu.edu/index.php/RS#Pulsed-power_applications_.282-LTD-driver_and_more.29 go back]
  
=high energy density plasma defined as a plasma with pressure above 1 MBar=
+
=high energy density plasma is a plasma with pressure above 1 MBar=
 
<math>1 MBar = 1 \times 10^6 \times 10^5 Pa = 10^{11} Pa = 10^{11} (N m)/(m^2) = 10^{11} J/m = 10^{11} (10^7 erg)/(10^6 cm^3) = 10^{12} erg/cm^3</math>
 
<math>1 MBar = 1 \times 10^6 \times 10^5 Pa = 10^{11} Pa = 10^{11} (N m)/(m^2) = 10^{11} J/m = 10^{11} (10^7 erg)/(10^6 cm^3) = 10^{12} erg/cm^3</math>
  
  
=magnetic field produced by single wire (Ampere law / Biot-Savart Law)=
+
=magnetic field produced by single wire (Biot-Savart Law)=
  
  <math>B[G] = 0.2 \times I(A) / r(cm) </math>
+
  <math>B[T] = \mu I / ( 2\pi r ) </math>
<math>B[T] = 0.2 \times I(kA) / r(mm) </math>
 
  
*100 kA at 1 mm radius is 20 T
 
 
*10 MA at 4 mm radius is 500 T
 
*10 MA at 4 mm radius is 500 T
*100 kA at 1 um radius is 20 kT
+
*100 kA at 40 um radius is 500 T
 
+
*160 kA at 5 um radius is 6,400 T
 
 
  
 
=magnetic pressure=
 
=magnetic pressure=
Line 21: Line 18:
 
  <math> P_m(bar) = 0.16 \times I(kA)^2 \times R(mm)^{-2} </math>  
 
  <math> P_m(bar) = 0.16 \times I(kA)^2 \times R(mm)^{-2} </math>  
  
*100 kA at 1 mm radius is 1.6 kBar
 
 
*10 MA at 4 mm radius is 1 MBar
 
*10 MA at 4 mm radius is 1 MBar
*100 kA at 1 um radius is 1.6 GBar
+
*100 kA at 40 um radius is 1 MBar
 +
*160 kA at 5 um radius is 164 MBar
  
 +
=Bennett condition=
 +
*magnetic pressure = plasmakinetic pressure
  
  
=Bennett condition=
+
*14 MBar at 140 kA at 15-um radius (shot 634 with 2x30-um W wires)
*magnetic pressure = plasmakinetic pressure
+
*25 MBar at 150 kA at 12-um radius (shot 657 with 2x30-um Mo wires)
*100 kA at 1 um radius is about 1.600 GBar of plasma pressure (wau!! really??!!)
+
*100 MBar at 154 kA at 6-um radius (shot 657 with 2x30-um Mo wires)
 +
 
 +
=Links=
 +
*[http://www.nap.edu/read/10544/chapter/1 Frontiers in High Energy Density Physics THE X-GAMES OF CONTEMPORARY SCIENCE]

Latest revision as of 18:13, 31 May 2017

go back

high energy density plasma is a plasma with pressure above 1 MBar

[math]1 MBar = 1 \times 10^6 \times 10^5 Pa = 10^{11} Pa = 10^{11} (N m)/(m^2) = 10^{11} J/m = 10^{11} (10^7 erg)/(10^6 cm^3) = 10^{12} erg/cm^3[/math]


magnetic field produced by single wire (Biot-Savart Law)

[math]B[T] = \mu I / ( 2\pi r ) [/math]
  • 10 MA at 4 mm radius is 500 T
  • 100 kA at 40 um radius is 500 T
  • 160 kA at 5 um radius is 6,400 T

magnetic pressure

[math] P_m(bar) = 4 \times B(T)^2 [/math]
[math] P_m(bar) = 0.16 \times I(kA)^2 \times R(mm)^{-2} [/math] 
  • 10 MA at 4 mm radius is 1 MBar
  • 100 kA at 40 um radius is 1 MBar
  • 160 kA at 5 um radius is 164 MBar

Bennett condition

  • magnetic pressure = plasmakinetic pressure


  • 14 MBar at 140 kA at 15-um radius (shot 634 with 2x30-um W wires)
  • 25 MBar at 150 kA at 12-um radius (shot 657 with 2x30-um Mo wires)
  • 100 MBar at 154 kA at 6-um radius (shot 657 with 2x30-um Mo wires)

Links