Difference between revisions of "User talk:Brian"

From New IAC Wiki
Jump to navigation Jump to search
 
(7 intermediate revisions by the same user not shown)
Line 16: Line 16:
 
http://brems.iac.isu.edu/mrtg/cleantemp1-day.png <br/>
 
http://brems.iac.isu.edu/mrtg/cleantemp1-day.png <br/>
 
<!-- http://134.50.3.81/image.png -->
 
<!-- http://134.50.3.81/image.png -->
 +
 +
 +
 +
===Odds===
 +
Finally, <math>\{u_1, u_2, u_3\} = \{ 1, 2\sqrt{3}(t-1/2), 6\sqrt{5}(t^2-t+1/6) \}</math>.
 +
 +
(b) Let <math>B = \{u_1,u_2,u_3\}</math> be the orthonormal basis found above.
 +
For any <math>f(t) = at^2+bt+c \in U</math>
 +
<br/>
 +
<math> f(t) = \sum_{i=1}^3 a_iu_i(t)
 +
= \left( \frac{a}{3}+\frac{b}{2}+c \right) + \left( \frac{\sqrt{3}}{3}(a+b) \right) 2\sqrt{3} \left( t-\frac{1}{2} \right)
 +
  + \left( \frac{\sqrt{5}}{30}a \right) 6\sqrt{5} \left( t^2-t+\frac{1}{6} \right)
 +
</math>
 +
<br/>
 +
<math>
 +
= \frac{a}{3}+\frac{b}{2}+c
 +
  - a - b + 2at + 2bt 
 +
  + at^2 - at + \frac{a}{6}
 +
</math>
 +
<br/>
 +
<math>
 +
= at^2 + t (a+2b) -\frac{1}{2}(a+b-2c)
 +
</math>
  
  
Line 35: Line 58:
 
[[Micro_Cluster]]<br/>
 
[[Micro_Cluster]]<br/>
  
===MCNPX MPI Windows===
 
  
* Copy MCNPX directory
+
[[Brian Articles]]
* Install MPICH2
 
* Set datapath, add mpich2 to path
 
* Restrict firewall permissions to 127.0.0.1
 
* MPICH2 password should be blank
 
* mpiexec -np 3 mcnpx i=...
 

Latest revision as of 23:05, 26 May 2010

<ref>Phoenix: The Peoples of the Hills: Ancient Ararat and Caucasus by Charles Burney , David Marshall Lang, Phoenix Press; New Ed edition (December 31, 2001)</ref>

http://brems.iac.isu.edu/mrtg/cleantemp1-day.png


Odds

Finally, [math]\{u_1, u_2, u_3\} = \{ 1, 2\sqrt{3}(t-1/2), 6\sqrt{5}(t^2-t+1/6) \}[/math].

(b) Let [math]B = \{u_1,u_2,u_3\}[/math] be the orthonormal basis found above. For any [math]f(t) = at^2+bt+c \in U[/math]
[math] f(t) = \sum_{i=1}^3 a_iu_i(t) = \left( \frac{a}{3}+\frac{b}{2}+c \right) + \left( \frac{\sqrt{3}}{3}(a+b) \right) 2\sqrt{3} \left( t-\frac{1}{2} \right) + \left( \frac{\sqrt{5}}{30}a \right) 6\sqrt{5} \left( t^2-t+\frac{1}{6} \right) [/math]
[math] = \frac{a}{3}+\frac{b}{2}+c - a - b + 2at + 2bt + at^2 - at + \frac{a}{6} [/math]
[math] = at^2 + t (a+2b) -\frac{1}{2}(a+b-2c) [/math]


[math]\sqrt{1-e^2}[/math]

Gumstix Crapola

Origin licensing

Brian test.png

Go to this page to add new users: Special:Userlogin

And this page to modify groups: Special:UserRights

Micro_Cluster


Brian Articles