Difference between revisions of "Lab 3 TF EIM"

From New IAC Wiki
Jump to navigation Jump to search
 
(23 intermediate revisions by 2 users not shown)
Line 2: Line 2:
  
 
= 1-50 kHz filter (20 pnts)=
 
= 1-50 kHz filter (20 pnts)=
# Design a low-pass RC filter with a break point between 1-50 kHz.  The break point is the frequency at which the filter starts to attenuate the AC signal.  For a Low pass filter, AC signals with a frequency above 1-50 kHz will start to be attenuated (not passed).
+
1.) Design a low-pass RC filter with a break point between 1-50 kHz.  The break point is the frequency at which the filter starts to attenuate the AC signal.  For a Low pass filter, AC signals with a frequency above 1-50 kHz will start to be attenuated (not passed).
#Now construct the circuit using a non-polar capacitor.
+
 
#use a sinusoidal variable frequency oscillator to provide an input voltage to your filter.
+
Enter your values for<math> R, C,</math> and <math>\omega</math>
#Measure the input and output voltages for at least 8 different frequencies which span the frequency range from 1 Hz to 1 MHz.
+
{| border="3"  cellpadding="20" cellspacing="0"
#Graph the <math>\log \left(\frac{V_{out}}{V_{in}} \right)</math> -vs- <math>\log (\nu)</math>
+
|R||C || <math> \omega</math> || <math>\nu</math>
 +
|-
 +
|  || || ||
 +
|}
 +
 
 +
 
 +
2.)Now construct the circuit using a non-polar capacitor.
 +
 
 +
[[File:TF_EIM_Lab3.png | 400 px]]
 +
 
 +
3.)use a sinusoidal variable frequency oscillator to provide an input voltage to your filter.
 +
 
 +
4.)Measure the input <math>(V_{in})</math> and output <math>(V_{out})</math> voltages for at least 8 different frequencies<math> (\nu)</math>  which span the frequency range from 1 Hz to 1 MHz.
 +
 
 +
 
 +
 
 +
{| border="3"  cellpadding="20" cellspacing="0"
 +
|<math>\nu</math> ||<math>V_{in}</math> || <math>V_{out}</math> || <math>\frac{V_{out}}{V_{in}}</math>
 +
|-
 +
| Hz || Volts || Volts ||
 +
|-
 +
|  || || ||
 +
|-
 +
|  || || ||
 +
|-
 +
|  || || ||
 +
|-
 +
|  || || ||
 +
|-
 +
|  || || ||
 +
|-
 +
|  || || ||
 +
|-
 +
|  || || ||
 +
|-
 +
|  || || ||
 +
|-
 +
|}
 +
 
 +
5.) Graph the <math>\log \left(\frac{V_{out}}{V_{in}} \right)</math> -vs- <math>\log (\nu)</math>
  
 
=phase shift (10 pnts)=
 
=phase shift (10 pnts)=
#measure the phase shift between <math>V_{in}</math> and <math>V_{out}</math>
+
#measure the phase shift between <math>V_{in}</math> and <math>V_{out}</math> as a function of frequency <math>\nu</math>.  Hint: you could use<math> V_{in}</math> as an external trigger and measure the time until <math>V_{out}</math> reaches a max on the scope <math>(\sin(\omega t + \phi) = \sin\left ( \omega\left [t + \frac{\phi}{\omega}\right]\right )= \sin\left ( \omega\left [t + \delta t \right] \right ))</math>.
  
 
=Questions=
 
=Questions=
  
#compare the theoretical and experimentally measured break frequencies. (5 pnts)
+
#Compare the theoretical and experimentally measured break frequencies. (5 pnts)
#Calculate and expression for <math>\frac{V_{out}}{ V_{in}}</math> as a function of <math>\nu</math>, <math>R</math>, and <math>C</math>.  The Gain is defined as the ratio of <math>V_{out}</math> to <math>V_{in}</math>.(5 pnts)
+
#Calculate an expression for <math>\frac{V_{out}}{ V_{in}}</math> as a function of <math>\nu</math>, <math>R</math>, and <math>C</math>.  The Gain is defined as the ratio of <math>V_{out}</math> to <math>V_{in}</math>.(5 pnts)
 +
#Sketch the phasor diagram for <math>V_{in}</math>,<math> V_{out}</math>, <math>V_{R}</math>, and <math>V_{C}</math>.(30 pnts)
 +
#Calculate an expression for the phase shift <math>\theta</math> as a function of <math>\nu</math>, <math>R</math>, <math>C</math> and graph <math>\theta</math> -vs <math>\nu</math>. (20 pnts)
 
#Compare the theoretical and experimental value for the phase shift <math>\theta</math>. (5 pnts)
 
#Compare the theoretical and experimental value for the phase shift <math>\theta</math>. (5 pnts)
#Sketch the phasor diagram for <math>V_{in}</math>,<math> V_{out}</math>, <math>V_{R}</math>, and <math>V_{C}</math>. Put the current <math>i</math> along the real voltage axis. (30 pnts)
+
# what is the phase shift <math>\theta</math> for a DC input (the limit as frequency goes to zero)  and a very-high frequency input?(5 pnts)
# what is the phase shift <math>\theta</math> for a DC input and a very-high frequency input?(5 pnts)
 
# calculate and expression for the phase shift <math>\theta</math> as a function of <math>\nu</math>, <math>R</math>, <math>C</math> and graph <math>\theta</math> -vs <math>\nu</math>. (20 pnts)
 
  
  
 
[[Forest_Electronic_Instrumentation_and_Measurement]]
 
[[Forest_Electronic_Instrumentation_and_Measurement]]

Latest revision as of 17:59, 2 February 2015

RC Low-pass filter

1-50 kHz filter (20 pnts)

1.) Design a low-pass RC filter with a break point between 1-50 kHz. The break point is the frequency at which the filter starts to attenuate the AC signal. For a Low pass filter, AC signals with a frequency above 1-50 kHz will start to be attenuated (not passed).

Enter your values forR,C, and ω

R C ω ν


2.)Now construct the circuit using a non-polar capacitor.

TF EIM Lab3.png

3.)use a sinusoidal variable frequency oscillator to provide an input voltage to your filter.

4.)Measure the input (Vin) and output (Vout) voltages for at least 8 different frequencies(ν) which span the frequency range from 1 Hz to 1 MHz.


ν Vin Vout VoutVin
Hz Volts Volts

5.) Graph the log(VoutVin) -vs- log(ν)

phase shift (10 pnts)

  1. measure the phase shift between Vin and Vout as a function of frequency ν. Hint: you could useVin as an external trigger and measure the time until Vout reaches a max on the scope (sin(ωt+ϕ)=sin(ω[t+ϕω])=sin(ω[t+δt])).

Questions

  1. Compare the theoretical and experimentally measured break frequencies. (5 pnts)
  2. Calculate an expression for VoutVin as a function of ν, R, and C. The Gain is defined as the ratio of Vout to Vin.(5 pnts)
  3. Sketch the phasor diagram for Vin,Vout, VR, and VC.(30 pnts)
  4. Calculate an expression for the phase shift θ as a function of ν, R, C and graph θ -vs ν. (20 pnts)
  5. Compare the theoretical and experimental value for the phase shift θ. (5 pnts)
  6. what is the phase shift θ for a DC input (the limit as frequency goes to zero) and a very-high frequency input?(5 pnts)


Forest_Electronic_Instrumentation_and_Measurement