Difference between revisions of "TF EIMLab1 Writeup"

From New IAC Wiki
Jump to navigation Jump to search
(Created page with '=Kirchoff's Law (50 pnts)= == Smokey Circuits== When doing these labs it is important to determine the limitations of your electrical components in order to avoid damaging them...')
 
 
(26 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
=Kirchoff's Law (50 pnts)=
 
=Kirchoff's Law (50 pnts)=
  
== Smokey Circuits==
 
  
When doing these labs it is important to determine the limitations of your electrical components in order to avoid damaging them.
 
 
This lab uses resistors.  Resistors are vulnerable to melting if you push too much current through them.
 
 
Resistors have power ratings ranging from 1/8 Watt up to several Watts.  The common resistors are rated at 1/4 Watt.  Let's assume this rating for the resistors in this lab.
 
 
Determine the maximum voltage of the DC power supply you will use. (ie, 30 Volts)
 
 
;<math> P =I^2R = V^2/R \Rightarrow R = \frac{V^2}{P} > \frac{\left (30 V \right)^2}{1/4 \mbox{Watt}} > 3600 \Omega</math>
 
 
:By keeping your resistance values above 3600 <math>\Omega</math> you should be able to avoid burning up 1/4 Watt resistors when your max voltage is 30 Volts.
 
 
The next objective is to use resistors which allow currents that you can measure with your voltmeter.
 
 
;Since <math>V=IR \Rightarrow I = V/R = 30 \mbox{Volts}/3600 \Omega = 8\mbox{mA}</math>
 
 
Determine the range of currents which the voltmeter can measure. (ie 1 mA)
 
 
To get measurable currents you need low resistance BUT the lower resistances will need to have a high power rating.  These two competing properties limit the range of resistances you can use.
 
 
 
Select the three resistors you should use for this experiment.
 
  
 
==Construct the circuit below==
 
==Construct the circuit below==
Line 38: Line 15:
  
 
{| border="3"  cellpadding="20" cellspacing="0"
 
{| border="3"  cellpadding="20" cellspacing="0"
|Variable ||Measured Value
+
|Variable ||Measured Value  
 
|-
 
|-
| <math>V_A </math> ||   
+
| <math>V_A </math> ||  20 Volts
 
|-
 
|-
| <math>R_1</math> ||   
+
| <math>R_1</math> ||  902 <math>\Omega</math>
 
|-
 
|-
| <math>R_2</math> ||   
+
| <math>R_2</math> ||  10.2 <math>\Omega</math>
 
|-
 
|-
| <math>R_3</math> ||     
+
| <math>R_3</math> ||    10.6 <math>\Omega</math>
 
|}
 
|}
  
Line 55: Line 32:
  
 
a.) Predict the value of <math>V_B</math>
 
a.) Predict the value of <math>V_B</math>
 +
 +
<math>V_A - I_1R_1 = V_b </math>
 +
 +
I_1 =?
 +
 +
Kirchoff's Loop theorem (Voltage Law)
 +
 +
<math>V_A -I_1(R_1+R_{tot}) = 0</math>  where R<math>_{tot}</math> =resistance for <math>R_2</math> and <math>R_3</math> in series.
 +
 +
<math>R_{tot} = \frac{1}{\frac{1}{R_2} + \frac{1}{R_3}} = 5.2 \Omega</math>
 +
 +
<math>I_1 = \frac{V_A}{R_1+R_{tot}} = \frac{ 20 \mbox{Volts}}{902 \Omega + 5.2 \Omega} = 22 \mbox{mA}</math>
 +
 +
 +
<math>V_b = V_A - I_1 R_1 = 20 - 0.022 \times 902 = 156</math> mV
  
 
b.) Predict the values of the three currents.
 
b.) Predict the values of the three currents.
 +
 +
<math>I_1 = I_2 + I_3</math>
 +
 +
I<math>_2 R_2 - I_3 R_3 = 0</math>
 +
 +
2 equations and 2 unkowns
 +
 +
<math>I_3 = \frac{I_1}{\frac{R_3}{R_2} +1} = \frac{22 mV}{\frac{10.6}{10.2}+1} = 10.8</math> mA
 +
 +
<math>I_2 = I_1 - I_3 = 22 - 10.8 = 11.2</math> mA
  
 
c.) compare your predictions and measurements  by filling in the table below.
 
c.) compare your predictions and measurements  by filling in the table below.
Line 63: Line 65:
 
|Variable ||Measured Value|| Predicted Value|| % Difference
 
|Variable ||Measured Value|| Predicted Value|| % Difference
 
|-
 
|-
| <math>V_B</math> ||  || ||  
+
| <math>V_B</math> || 103.5 +/- 50 mV || 156 || 50%
 
|-
 
|-
| <math>I_1</math> ||  || ||  
+
| <math>I_1</math> || 20.4 mA ||22 || 7%
 
|-
 
|-
| <math>I_2</math> ||   || ||  
+
| <math>I_2</math> || 9.5 mA  ||11.2  || 18%
 
|-
 
|-
| <math>I_3</math> ||   || ||  
+
| <math>I_3</math> || 9.0 mA  || 10.8|| 20%
 
|}
 
|}
  
Line 75: Line 77:
  
 
Measure the internal resistance of your power source by graphing the potential difference on the x-axis and the current on the y-axis for several values of the resistance <math>R_L</math> shown in the circuit below.  Begin with <math>R_L = 1k\Omega</math> and then decrease it by a factor of 5 for each subsequent measurement.  You can use a volt meter to measure the current and potential difference.
 
Measure the internal resistance of your power source by graphing the potential difference on the x-axis and the current on the y-axis for several values of the resistance <math>R_L</math> shown in the circuit below.  Begin with <math>R_L = 1k\Omega</math> and then decrease it by a factor of 5 for each subsequent measurement.  You can use a volt meter to measure the current and potential difference.
 +
 +
 +
[[File:TF_EIM_Lab1a_fig.png | 200px]][[File:TF_EIM_Lab1b_fig.png | 350px]]
 +
 +
 +
{| border="3"  cellpadding="20" cellspacing="0"
 +
| R_{Load} (<math>\Omega</math>) || V (Volts)|| I (mA)
 +
|-
 +
| 10|| 1.42 <math>\pm</math> 0.06 || 118 <math>\pm</math> 3
 +
|-
 +
| 93|| 1.55<math> \pm</math> 0.01 || 16.15 <math>\pm</math> 0.05
 +
|-
 +
|990 || 1.575 <math>\pm</math> 0.005 || 1.54 <math>\pm</math> 0.04
 +
|-
 +
|10110 || 1.579 <math>\pm</math> 0.005 || 0.146 <math>\pm</math> 0.005
 +
|-
 +
| 15060|| 1.579 <math>\pm</math> 0.005 || 0.101 <math>\pm</math> 0.003
 +
|}
 +
 +
<math>V_A - V_B = IR_{Load} = V_{bb} - I R_{int}</math>
 +
 +
<math>(V_A - V_B) = - R_{int} I +  V_{bb}</math>
 +
 +
<math>y = mx+b \Rightarrow R_{int} =</math> slope of V-vs- I plot
 +
 +
[[File:Lab1b_TF_EIM.png | 200 px]]
 +
 +
;Since the current is in mA the resistance must be in kOhms in order to get volts.
 +
 +
:<math>R_{int} = 1.33 \pm 0.04 \Omega</math>
 +
 +
Book suggests 1.5 flashlight battery could have an internal resistance of 0.5 Ohms.
 +
 +
Below I set R= 95 <math>\Omega</math>  and changed V
 +
 +
{| border="3"  cellpadding="20" cellspacing="0"
 +
| V (mv) || I (mA)
 +
|-
 +
| 126.1 || 0.79
 +
|-
 +
| 300 || 2.64
 +
|-
 +
| 500|| 4.62
 +
|-
 +
| 1000|| 9.29
 +
|-
 +
| 2000|| 18.78
 +
|-
 +
| 3000|| 30.4
 +
|}
 +
 +
Now lets try to fix V and change R
 +
 +
 +
 +
[[File:Lab1a_TF_EIM.png | 200 px]]
  
 
=Questions (20 pnts)=
 
=Questions (20 pnts)=

Latest revision as of 17:40, 20 January 2015

Kirchoff's Law (50 pnts)

Construct the circuit below

TF EIM Lab1.png


Enter the values of the DC voltage and Resisters that you used.

Use a voltmeter to measure the potential difference and resistances.

Variable Measured Value
[math]V_A [/math] 20 Volts
[math]R_1[/math] 902 [math]\Omega[/math]
[math]R_2[/math] 10.2 [math]\Omega[/math]
[math]R_3[/math] 10.6 [math]\Omega[/math]

Enter the measured and predicted quantities in the table below

Given [math]V_A[/math] and the values of all resistors, use Kirchoff's laws to predict

a.) Predict the value of [math]V_B[/math]

[math]V_A - I_1R_1 = V_b [/math]

I_1 =?

Kirchoff's Loop theorem (Voltage Law)

[math]V_A -I_1(R_1+R_{tot}) = 0[/math] where R[math]_{tot}[/math] =resistance for [math]R_2[/math] and [math]R_3[/math] in series.

[math]R_{tot} = \frac{1}{\frac{1}{R_2} + \frac{1}{R_3}} = 5.2 \Omega[/math]

[math]I_1 = \frac{V_A}{R_1+R_{tot}} = \frac{ 20 \mbox{Volts}}{902 \Omega + 5.2 \Omega} = 22 \mbox{mA}[/math]


[math]V_b = V_A - I_1 R_1 = 20 - 0.022 \times 902 = 156[/math] mV

b.) Predict the values of the three currents.

[math]I_1 = I_2 + I_3[/math]

I[math]_2 R_2 - I_3 R_3 = 0[/math]

2 equations and 2 unkowns

[math]I_3 = \frac{I_1}{\frac{R_3}{R_2} +1} = \frac{22 mV}{\frac{10.6}{10.2}+1} = 10.8[/math] mA

[math]I_2 = I_1 - I_3 = 22 - 10.8 = 11.2[/math] mA

c.) compare your predictions and measurements by filling in the table below.

Variable Measured Value Predicted Value % Difference
[math]V_B[/math] 103.5 +/- 50 mV 156 50%
[math]I_1[/math] 20.4 mA 22 7%
[math]I_2[/math] 9.5 mA 11.2 18%
[math]I_3[/math] 9.0 mA 10.8 20%

Internal resistance (30 pnts)

Measure the internal resistance of your power source by graphing the potential difference on the x-axis and the current on the y-axis for several values of the resistance [math]R_L[/math] shown in the circuit below. Begin with [math]R_L = 1k\Omega[/math] and then decrease it by a factor of 5 for each subsequent measurement. You can use a volt meter to measure the current and potential difference.


TF EIM Lab1a fig.pngTF EIM Lab1b fig.png


R_{Load} ([math]\Omega[/math]) V (Volts) I (mA)
10 1.42 [math]\pm[/math] 0.06 118 [math]\pm[/math] 3
93 1.55[math] \pm[/math] 0.01 16.15 [math]\pm[/math] 0.05
990 1.575 [math]\pm[/math] 0.005 1.54 [math]\pm[/math] 0.04
10110 1.579 [math]\pm[/math] 0.005 0.146 [math]\pm[/math] 0.005
15060 1.579 [math]\pm[/math] 0.005 0.101 [math]\pm[/math] 0.003

[math]V_A - V_B = IR_{Load} = V_{bb} - I R_{int}[/math]

[math](V_A - V_B) = - R_{int} I + V_{bb}[/math]

[math]y = mx+b \Rightarrow R_{int} =[/math] slope of V-vs- I plot

Lab1b TF EIM.png

Since the current is in mA the resistance must be in kOhms in order to get volts.
[math]R_{int} = 1.33 \pm 0.04 \Omega[/math]

Book suggests 1.5 flashlight battery could have an internal resistance of 0.5 Ohms.

Below I set R= 95 [math]\Omega[/math] and changed V

V (mv) I (mA)
126.1 0.79
300 2.64
500 4.62
1000 9.29
2000 18.78
3000 30.4

Now lets try to fix V and change R


Lab1a TF EIM.png

Questions (20 pnts)

  1. What conservation law is involved in Kirchoff's Loop Theorem?
  2. What does the slope in the internal resistance plot above represent?


TF_EIM_LabWriteups