Difference between revisions of "Forest UCM MiNF"
Jump to navigation
Jump to search
Line 29: | Line 29: | ||
: <math>\Rightarrow \ddot {\vec r} = \ddot {\vec {r}_0} - \dot \vec V= \ddot {\vec {r}_0} - \vec A </math> | : <math>\Rightarrow \ddot {\vec r} = \ddot {\vec {r}_0} - \dot \vec V= \ddot {\vec {r}_0} - \vec A </math> | ||
− | : <math>\Rightarrow m\ddot {\vec r} = m\ddot {\vec {r}_0} - m \vec A= \vec F - m\vec A | + | : <math>\Rightarrow m\ddot {\vec r} = m\ddot {\vec {r}_0} - m \vec A= \vec F - m\vec A= \vec F - \vec {F}_{\mbox {inertial}}</math> |
where | where |
Revision as of 13:23, 3 November 2014
Mechanics in Noninertial Reference Frames
Linearly accelerating reference frames
Let
represent an inertial reference frame and \mathcal S represent an noninertial reference frame with acceleration relative to .Ball thrown straight up
Consider the motion of a ball thrown straight up as viewed from
.
Using a Galilean transformation (not a relativistic Lorentz transformation)
At some instant in time the velocities add like
where
- = velocity of moving frame with respect to at some instant in time
taking derivative with respect to time
where
- inertial force