Difference between revisions of "Forest UCM MiNF"

From New IAC Wiki
Jump to navigation Jump to search
Line 27: Line 27:
 
taking derivative with respect to time
 
taking derivative with respect to time
  
: <math>\Rightarrow \ddot {\vec r} = \ddot {\vec {r}_0} - \dot \vec V</math>
+
: <math>\Rightarrow \ddot {\vec r} = \ddot {\vec {r}_0} - \dot \vec V= \ddot {\vec {r}_0} -  \vec A</math>
  
  
 
[[Forest_Ugrad_ClassicalMechanics]]
 
[[Forest_Ugrad_ClassicalMechanics]]

Revision as of 13:19, 3 November 2014

Mechanics in Noninertial Reference Frames

Linearly accelerating reference frames

Let [math]\mathcal S_0[/math] represent an inertial reference frame and \mathcal S represent an noninertial reference frame with acceleration [math]\vec A[/math] relative to [math]\mathcal S_0[/math].

Ball thrown straight up

Consider the motion of a ball thrown straight up as viewed from [math]\mathcal S[/math].


Using a Galilean transformation (not a relativistic Lorentz transformation)

At some instant in time the velocities add like

SPIM ElasCollis Lab CM Frame Velocities.jpg


[math]\dot {\vec {r}_0} = \dot {\vec r}+ \vec V[/math]

where

[math]\vec V[/math] = velocity of moving frame [math]\mathcal S[/math] with respect to [math]\mathcal S_0[/math] at some instant in time


[math]\Rightarrow \dot {\vec r} = \dot {\vec {r}_0} - \vec V[/math]

taking derivative with respect to time

[math]\Rightarrow \ddot {\vec r} = \ddot {\vec {r}_0} - \dot \vec V= \ddot {\vec {r}_0} - \vec A[/math]


Forest_Ugrad_ClassicalMechanics