Difference between revisions of "ISU Coloq 11-3-2014"
Jump to navigation
Jump to search
| Line 15: | Line 15: | ||
:<math>P^{\mu} equiv \left ( \frac{E}{c} , \vec p \right )</math> | :<math>P^{\mu} equiv \left ( \frac{E}{c} , \vec p \right )</math> | ||
| − | :<math>P_{\mu} P^{\mu} = \left ( \frac{E}{c}\right )^2 - \vec p^2 = E^2-p^2 = m^2</math> | + | :<math>P_{\mu} P^{\mu} = \left ( \frac{E}{c}\right )^2 - \vec p^2 = E^2-p^2 = m^2</math> if you define the speed of light as unity |
| + | |||
| + | ;Note: Other conventions used by Perkins | ||
| + | |||
| + | :<math>P_{\mu} equiv \left ( \vec p, -E \right )</math> | ||
| + | :<math>P^{\mu} equiv \left ( \vec p , E\right )</math> | ||
| + | |||
| + | or Kollen | ||
| + | |||
| + | :<math>P_{\mu} equiv \left ( \vec p, iE \right )</math> | ||
| + | :<math>P^{\mu} equiv \left ( \vec p , iE\right )</math> | ||
[[TF_SIDIS_Physics]] | [[TF_SIDIS_Physics]] | ||
Revision as of 19:45, 8 October 2014
Elastic -vs- Inelastic Collisisons
Elastic Collisions: Conserve P and E
Inelastic : Only Conserve P
Definition of Mission Mass
Definition of Momentum Transfer
4-Momentum vector definition using Ryder convention
- if you define the speed of light as unity
- Note
- Other conventions used by Perkins
or Kollen