Difference between revisions of "Forest UCM Osc Damped"

From New IAC Wiki
Jump to navigation Jump to search
Line 12: Line 12:
 
or
 
or
  
:<math>  m \ddot x -kx - b \dot x = 0</math>: in 1-D
+
:<math>  m \ddot x + kx + b \dot x = 0</math>: in 1-D
  
 
or
 
or
  
:<math>  \ddot x - \frac{k}{m}x - \frac{b}{m} \dot x = 0</math>: in 1-D
+
:<math>  \ddot x + \frac{k}{m}x + \frac{b}{m} \dot x = 0</math>: in 1-D
  
  
Line 27: Line 27:
 
then  
 
then  
  
:<math>  \ddot x - 2 \beta \dot x- \omega^2_0x  = 0</math>: in 1-D
+
:<math>  \ddot x + 2 \beta \dot x + \omega^2_0x  = 0</math>: in 1-D
  
  
As see in section [[Forest_UCM_Osc_SHM#Equation_of_motion]]
+
As see in section [[Forest_UCM_Osc_SHM#Equation_of_motion]], you can determine solutions to the above
 +
by writing the analogous auxilary eqation.
  
 
[[Forest_UCM_Osc#Damped_Oscillations]]
 
[[Forest_UCM_Osc#Damped_Oscillations]]

Revision as of 12:41, 5 October 2014

1-D Damped Oscillaions

Equation of Motion

As in the case of air resistance, assume there is frictional force proportional to the velocity of the oscillation body.


[math] \sum \vec{F}_{ext} = -k\vec r - b \vec \dot v = m \vec \ddot r[/math]
[math] \sum F_{ext} = -kx - b \dot x = m \ddot x[/math]: in 1-D

or

[math] m \ddot x + kx + b \dot x = 0[/math]: in 1-D

or

[math] \ddot x + \frac{k}{m}x + \frac{b}{m} \dot x = 0[/math]: in 1-D


let

[math]\frac{k}{m} = \omega^2_0 =[/math] undamped oscillation frequency
[math]\frac{b}{m} \equiv 2 \beta =[/math] damping constant

then

[math] \ddot x + 2 \beta \dot x + \omega^2_0x = 0[/math]: in 1-D


As see in section Forest_UCM_Osc_SHM#Equation_of_motion, you can determine solutions to the above by writing the analogous auxilary eqation.

Forest_UCM_Osc#Damped_Oscillations