Difference between revisions of "Forest UCM Energy Line1D"
(21 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
The equation of motion for a system restricted to 1-D is readily solved from conservation of energy when the force is conservative. | The equation of motion for a system restricted to 1-D is readily solved from conservation of energy when the force is conservative. | ||
− | : <math>T + U(x) =</math> | + | : <math>T + U(x) =</math> constant <math>\equiv E</math> |
: <math>\Rightarrow T = E - U(x)</math> | : <math>\Rightarrow T = E - U(x)</math> | ||
Line 16: | Line 16: | ||
− | == spring example== | + | ==Free fall== |
+ | |||
+ | Consider a rock dropped at t=0 from a tower of height h. | ||
+ | |||
+ | The potential energy stored in the rock at any instant is given by | ||
+ | |||
+ | <math>U(x) = -mgx</math> | ||
+ | |||
+ | ;Note: The potential is highest at x=0 and becomes negative as x increases | ||
+ | |||
+ | The initial total energy is | ||
+ | |||
+ | :<math>E_{tot} = T + U = 0 -0 = 0</math> | ||
+ | : <math>t = \int \pm \sqrt{\frac{m}{2\left (E-U(x) \right )}} dx </math> | ||
+ | :: <math> = \int \pm \sqrt{\frac{m}{2\left (0-(-mgx) \right )}} dx </math> | ||
+ | :: <math> = \int \pm \sqrt{\frac{1}{2gx}} dx = \int \pm (2gx)^{-\frac{1}{2}}dx </math> | ||
+ | :: <math> = \pm (2g)^{-\frac{1}{2}} 2\sqrt x = \sqrt{\frac{2x}{g} } </math> | ||
+ | |||
+ | |||
+ | or | ||
+ | |||
+ | :<math>x = \frac{1}{2} gt^2</math> | ||
+ | |||
+ | == spring example (problem 2.8)== | ||
Consider the problem of a mass attached to a spring in 1-D. | Consider the problem of a mass attached to a spring in 1-D. | ||
Line 29: | Line 52: | ||
::<math> = \sqrt{\frac{m}{2}} \int_{x_0}^x\left (E-U(x) \right )^{-\frac{1}{2}} dx </math> | ::<math> = \sqrt{\frac{m}{2}} \int_{x_0}^x\left (E-U(x) \right )^{-\frac{1}{2}} dx </math> | ||
::<math> = \sqrt{\frac{m}{2}} \int_{x_0}^x\left (E-\frac{1}{2}kx^2 \right )^{-\frac{1}{2}} dx </math> | ::<math> = \sqrt{\frac{m}{2}} \int_{x_0}^x\left (E-\frac{1}{2}kx^2 \right )^{-\frac{1}{2}} dx </math> | ||
− | ::<math> = \sqrt{\frac{m}{ | + | ::<math> = \sqrt{\frac{m}{2E}} \int_{x_0}^x \left (1-\left ( x \sqrt{\frac{k}{2E}}\right ) ^2 \right )^{-\frac{1}{2}} dx </math> |
let | let | ||
:<math>\sin \theta = x \sqrt{\frac{k}{2E}}</math> and <math> \omega = \sqrt{\frac{k}{m}}</math> | :<math>\sin \theta = x \sqrt{\frac{k}{2E}}</math> and <math> \omega = \sqrt{\frac{k}{m}}</math> | ||
+ | :<math>\cos \theta d \theta = dx \sqrt{\frac{k}{2E}}</math> | ||
then | then | ||
− | : t = \frac{1}{\omega} \int_{\theta_0}^{\theta} d \theta | + | : <math>t = \sqrt{\frac{m}{2E}} \int_{x_0}^x \left (1-\sin^2 \theta \right )^{-\frac{1}{2}} dx </math> |
+ | :: <math>= \sqrt{\frac{m}{2E}} \int_{x_0}^x \frac{dx}{ \cos \theta } </math> | ||
+ | :: <math>= \sqrt{\frac{m}{2E}} \int_{x_0}^x \frac{\cos \theta d\theta}{ \cos \theta } \sqrt{\frac{2E}{k}}</math> | ||
+ | :: <math>= \sqrt{\frac{m}{k}} \int_{x_0}^x d\theta</math> | ||
+ | :: <math>= \frac{1}{\omega} \int_{\theta_0}^{\theta} d \theta</math> | ||
+ | |||
+ | :<math> \theta = \omega t + \theta_0 </math> | ||
+ | :<math> \sin \theta = \sin {\left (\omega t + \theta_0 \right )}</math> | ||
+ | :<math>\sqrt{\frac{2E}{m}} \sin \theta = \sqrt{\frac{2E}{m}} \sin {\left (\omega t + \theta_0 \right )}</math> | ||
+ | :<math>x = \sqrt{\frac{2E}{m}} \sin {\left (\omega t + \theta_0 \right )}</math> | ||
+ | :<math>x = A \sin {\left (\omega t + \theta_0 \right )}</math> | ||
+ | |||
+ | : <math>A = \sqrt{\frac{2E}{m}}</math> = amplitude of oscillating motion | ||
+ | |||
+ | :<math>U(x) = \frac{1}{2} k x^2 = \frac{1}{2} kA^2 \sin^2 {\left (\omega t + \theta_0 \right )}</math> | ||
+ | : <math>E = T + U(x) = \frac{1}{2}kA^2</math> | ||
+ | |||
+ | |||
[[Forest_UCM_Energy#Energy_for_Linear_1-D_systems]] | [[Forest_UCM_Energy#Energy_for_Linear_1-D_systems]] |
Latest revision as of 12:18, 1 October 2014
The equation of motion for a system restricted to 1-D is readily solved from conservation of energy when the force is conservative.
- constant
The ambiguity in the sign of the above relation, due to the square root operation, is easily resolved in one dimension by inspection and more difficult to resolve in 3-D.
The velocity can change direction (signs) during the motion. In such cases it is best to separte the inegral into a part for one direction of the velocity and a second integral for the case of a negative velocity.
Free fall
Consider a rock dropped at t=0 from a tower of height h.
The potential energy stored in the rock at any instant is given by
- Note
- The potential is highest at x=0 and becomes negative as x increases
The initial total energy is
or
spring example (problem 2.8)
Consider the problem of a mass attached to a spring in 1-D.
The potential is given by
let
- and
then
- = amplitude of oscillating motion