Difference between revisions of "Forest UCM Energy Line1D"
Jump to navigation
Jump to search
Line 34: | Line 34: | ||
:<math>\sin \theta = x \sqrt{\frac{k}{2E}}</math> and <math> \omega = \sqrt{\frac{k}{m}}</math> | :<math>\sin \theta = x \sqrt{\frac{k}{2E}}</math> and <math> \omega = \sqrt{\frac{k}{m}}</math> | ||
− | :<math>\cos \theta d \theta = dx \sqrt{\frac{k}{2E}} | + | :<math>\cos \theta d \theta = dx \sqrt{\frac{k}{2E}}</math> |
then | then | ||
: <math>t = \sqrt{\frac{mE}{2}} \int_{x_0}^x \left (1-\sin^2 \theta \right )^{-\frac{1}{2}} dx </math> | : <math>t = \sqrt{\frac{mE}{2}} \int_{x_0}^x \left (1-\sin^2 \theta \right )^{-\frac{1}{2}} dx </math> | ||
− | : <math>= \sqrt{\frac{mE}{2}} \int_{x_0}^x \frac{dx}{ \cos \theta } </math> | + | :: <math>= \sqrt{\frac{mE}{2}} \int_{x_0}^x \frac{dx}{ \cos \theta } </math> |
+ | :: <math>= \sqrt{\frac{mE}{2}} \int_{x_0}^x \frac{dx}{ \cos \theta } </math> | ||
+ | :: <math>= \sqrt{\frac{mE}{2}} \int_{x_0}^x \frac{dx}{ \cos \theta } </math> | ||
:: <math>= \frac{1}{\omega} \int_{\theta_0}^{\theta} d \theta</math> | :: <math>= \frac{1}{\omega} \int_{\theta_0}^{\theta} d \theta</math> | ||
[[Forest_UCM_Energy#Energy_for_Linear_1-D_systems]] | [[Forest_UCM_Energy#Energy_for_Linear_1-D_systems]] |
Revision as of 12:34, 26 September 2014
The equation of motion for a system restricted to 1-D is readily solved from conservation of energy when the force is conservative.
- cosntant
The ambiguity in the sign of the above relation, due to the square root operation, is easily resolved in one dimension by inspection and more difficult to resolve in 3-D.
The velocity can change direction (signs) during the motion. In such cases it is best to separte the inegral into a part for one direction of the velocity and a second integral for the case of a negative velocity.
spring example
Consider the problem of a mass attached to a spring in 1-D.
The potential is given by
let
- and
then